ﻻ يوجد ملخص باللغة العربية
We report the discovery and spectroscopic confirmation of the quad-like lensed quasar system DES J0408-5354 found in the Dark Energy Survey (DES) Year 1 (Y1) data. This system was discovered during a search for DES Y1 strong lensing systems using a method that identified candidates as red galaxies with multiple blue neighbors. DES J0408-5354 consists of a central red galaxy surrounded by three bright (i < 20) blue objects and a fourth red object. Subsequent spectroscopic observations using the Gemini South telescope confirmed that the three blue objects are indeed the lensed images of a quasar with redshift z = 2.375, and that the central red object is an early-type lensing galaxy with redshift z = 0.597. DES J0408-5354 is the first quad lensed quasar system to be found in DES and begins to demonstrate the potential of DES to discover and dramatically increase the sample size of these very rare objects.
We present gravitational lens models of the multiply imaged quasar DES J0408-5354, recently discovered in the Dark Energy Survey (DES) footprint, with the aim of interpreting its remarkable quad-like configuration. We first model the DES single-epoch
We present time-delay measurements for the new quadruply imaged quasar DES J0408-5354, the first quadruply imaged quasar found in the Dark Energy Survey (DES). Our result is made possible by implementing a new observational strategy using almost dail
We present a blind time-delay cosmographic analysis for the lens system DES J0408$-$5354. This system is extraordinary for the presence of two sets of multiple images at different redshifts, which provide the opportunity to obtain more information at
In time-delay cosmography, three of the key ingredients are 1) determining the velocity dispersion of the lensing galaxy, 2) identifying galaxies and groups along the line of sight with sufficient proximity and mass to be included in the mass model,
We report the discovery of the quadruply lensed quasar J1433+6007, mined in the SDSS DR12 photometric catalogues using a novel outlier-selection technique, without prior spectroscopic or UV excess information. Discovery data obtained at the Nordic Op