ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting the CIB-$phi$ contamination in the cross-correlation of the tSZ effect and $phi$

148   0   0.0 ( 0 )
 نشر من قبل Hurier Guillaume Dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Hurier




اسأل ChatGPT حول البحث

The recent release of {it Planck} data gives access to a full sky coverage of the thermal Sunyaev-Zeldovich (tSZ) effect and of the cosmic microwave background (CMB) lensing potential ($phi$). The cross-correlation of these two probes of the large-scale structures in the Universe is a powerful tool for testing cosmological models, especially in the context of the difference between galaxy clusters and CMB for the best-fitting cosmological parameters. However, the tSZ effect maps are highly contaminated by cosmic infra-red background (CIB) fluctuations. Unlike other astrophysical components, the spatial distribution of CIB varies with frequency. Thus it cannot be completely removed from a tSZ Compton parameter map, which is constructed from a linear combination of multiple frequency maps. We have estimated the contamination of the CIB-$phi$ correlation in the tSZ-$phi$ power-spectrum. We considered linear combinations that reconstruct the tSZ Compton parameter from {it Planck} frequency maps. We conclude that even in an optimistic case, the CIB-$phi$ contamination is significant with respect to the tSZ-$phi$ signal itself. Consequently, We stress that tSZ-$phi$ analyses that are based on Compton parameter maps are highly limited by the bias produced by CIB-$phi$ contamination.



قيم البحث

اقرأ أيضاً

137 - N. Taburet 2010
If Dark Energy introduces an acceleration in the universal expansion then large scale gravitational potential wells should be shrinking, causing a blueshift in the CMB photons that cross such structures (Integrated Sachs-Wolfe effect, [ISW]). Galaxy clusters are known to probe those potential wells. In these objects, CMB photons also experience inverse Compton scattering off the hot electrons of the intra-cluster medium, and this results in a distortion with a characteristic spectral signature of the CMB spectrum (the so-called thermal Sunyaev-Zeldovich effect, [tSZ]). Since both the ISW and the tSZ effects take place in the same potential wells, they must be spatially correlated. We present how this cross ISW-tSZ signal can be detected in a CMB-data contained way by using the frequency dependence of the tSZ effect in multi frequency CMB experiments like {it Planck}, {em without} requiring the use of external large scale structure tracers data. We find that by masking low redshift clusters, the shot noise level decreases significantly, boosting the signal to noise ratio of the ISW--tSZ cross correlation. We also find that galactic and extragalactic dust residuals must be kept at or below the level of ~0.04 muK^2 at l=10, a limit that is a factor of a few below {it Planck}s expectations for foreground subtraction. If this is achieved, CMB observations of the ISW-tSZ cross correlation should also provide an independent probe for the existence of Dark Energy and the amplitude of density perturbations.
We present the first detection of the thermal Sunyaev-Zeldovich (tSZ) effect from a cluster of galaxies performed with a KIDs (Kinetic Inductance Detectors) based instrument. The tSZ effect is a distortion of the black body CMB (Cosmic Microwave Back ground) spectrum produced by the inverse Compton interaction of CMB photons with the hot electrons of the ionized intra-cluster medium. The massive, intermediate redshift cluster RX J1347.5-1145 has been observed using NIKA (New IRAM KIDs arrays), a dual-band (140 and 240 GHz) mm-wave imaging camera, which exploits two arrays of hundreds of KIDs: the resonant frequencies of the superconducting resonators are shifted by mm-wave photons absorption. This tSZ cluster observation demonstrates the potential of the next generation NIKA2 instrument, being developed for the 30m telescope of IRAM, at Pico Veleta (Spain). NIKA2 will have 1000 detectors at 140GHz and 2x2000 detectors at 240GHz, providing in that band also a measurement of the linear polarization. NIKA2 will be commissioned in 2015.
Using a dataset corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected in $pp$ collisions at centre-of-mass energies of 7 and 8 TeV, the $B_s^0 to phi phi$ branching fraction is measured to be [ mathcal{B}(B_s^0 to phi phi) = ( 1.84 pm 0.05 (text{stat}) pm 0.07 (text{syst}) pm 0.11 (f_s/f_d) pm 0.12 (text{norm}) ) times 10^{-5}, ] where $f_s/f_d$ represents the ratio of the $B_s^0$ to $B^0$ production cross-sections, and the $B^0 to phi K^*(892)^0$ decay mode is used for normalization. This is the most precise measurement of this branching fraction to date, representing a factor five reduction in the statistical uncertainty compared with the previous best measurement. A search for the decay $B^0 to phi phi$ is also made. No signal is observed, and an upper limit on the branching fraction is set as [ mathcal{B}(B^0 to phi phi) < 2.8 times 10^{-8} ] at 90% confidence level. This is a factor of seven improvement compared to the previous best limit.
94 - G. Hurier 2017
The thermal Sunyaev-Zeldovich (tSZ) effect is produced by the interaction of cosmic microwave background (CMB) photons with the hot (a few keV) and diffuse gas of electrons inside galaxy clusters integrated along the line of sight. This effect produc es a distortion of CMB blackbody emission law. This distortion law depends on the electronic temperature of the intra-cluster hot gas, $T_{e}$, through the so-called tSZ relativistic corrections. In this work, we have performed a statistical analysis of the tSZ spectral distortion on large galaxy cluster samples. We performed a stacking analysis for several electronic temperature bins, using both spectroscopic measurements of X-ray temperatures and a scaling relation between X-ray luminosities and electronic temperatures. We report the first high significance detection of the relativistic tSZ at a significance of 5.3 $sigma$. We also demonstrate that the observed tSZ relativistic corrections are consistent with X-ray deduced temperatures. This measurement of the tSZ spectral law demonstrates that tSZ effect spectral distorsion can be used as a probe to measure galaxy cluster temperatures.
318 - Svjetlana Fajfer 2004
We investigate the decay mechanism in the B^- -> phi phi K^- decay with the phi phi invariant mass below the charm threshold and in the neighborhood of the eta_c invariant mass region. Our approach is based on the use of factorization model and the k nowledge of matrix elements of the weak currents. For the B meson weak transition we apply form factor formalism, while for the light mesons we use effective weak and strong Lagrangians. We find that the dominant contributions to the branching ratio come from the eta, eta and eta(1490) pole terms of the penguin operators in the decay chains B^- -> eta (eta, eta(1490)) K^- -> phi phi K^-. Our prediction for the branching ratio is in agreement with the Belles result.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا