ﻻ يوجد ملخص باللغة العربية
The recent release of {it Planck} data gives access to a full sky coverage of the thermal Sunyaev-Zeldovich (tSZ) effect and of the cosmic microwave background (CMB) lensing potential ($phi$). The cross-correlation of these two probes of the large-scale structures in the Universe is a powerful tool for testing cosmological models, especially in the context of the difference between galaxy clusters and CMB for the best-fitting cosmological parameters. However, the tSZ effect maps are highly contaminated by cosmic infra-red background (CIB) fluctuations. Unlike other astrophysical components, the spatial distribution of CIB varies with frequency. Thus it cannot be completely removed from a tSZ Compton parameter map, which is constructed from a linear combination of multiple frequency maps. We have estimated the contamination of the CIB-$phi$ correlation in the tSZ-$phi$ power-spectrum. We considered linear combinations that reconstruct the tSZ Compton parameter from {it Planck} frequency maps. We conclude that even in an optimistic case, the CIB-$phi$ contamination is significant with respect to the tSZ-$phi$ signal itself. Consequently, We stress that tSZ-$phi$ analyses that are based on Compton parameter maps are highly limited by the bias produced by CIB-$phi$ contamination.
If Dark Energy introduces an acceleration in the universal expansion then large scale gravitational potential wells should be shrinking, causing a blueshift in the CMB photons that cross such structures (Integrated Sachs-Wolfe effect, [ISW]). Galaxy
We present the first detection of the thermal Sunyaev-Zeldovich (tSZ) effect from a cluster of galaxies performed with a KIDs (Kinetic Inductance Detectors) based instrument. The tSZ effect is a distortion of the black body CMB (Cosmic Microwave Back
Using a dataset corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected in $pp$ collisions at centre-of-mass energies of 7 and 8 TeV, the $B_s^0 to phi phi$ branching fraction is measured to be [ mathcal{B}(B_s^0 to phi phi) = ( 1.84 pm
The thermal Sunyaev-Zeldovich (tSZ) effect is produced by the interaction of cosmic microwave background (CMB) photons with the hot (a few keV) and diffuse gas of electrons inside galaxy clusters integrated along the line of sight. This effect produc
We investigate the decay mechanism in the B^- -> phi phi K^- decay with the phi phi invariant mass below the charm threshold and in the neighborhood of the eta_c invariant mass region. Our approach is based on the use of factorization model and the k