ترغب بنشر مسار تعليمي؟ اضغط هنا

High Energy Gamma Rays from Nebulae Associated with Extragalactic Microquasars and Ultra-Luminous X-ray Sources

245   0   0.0 ( 0 )
 نشر من قبل Yoshiyuki Inoue
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the extragalactic sky, microquasars and ultra-luminous X-ray sources (ULXs) are known as energetic compact objects locating at off-nucleus positions in galaxies. Some of these objects are associated with expanding bubbles with a velocity of 80-250 ${rm km~s^{-1}}$. We investigate the shock acceleration of particles in those expanding nebulae. The nebulae having fast expansion velocity $gtrsim120~{rm km~s^{-1}}$ are able to accelerate cosmic rays up to $sim100$ TeV. If 10% of the shock kinetic energy goes into particle acceleration, powerful nebulae such as the microquasar S26 in NGC 7793 would emit gamma rays up to several tens TeV with a photon index of $sim2$. These nebulae will be good targets for future Cherenkov Telescope Array observations given its sensitivity and angular resolution. They would also contribute to $sim7$% of the unresolved cosmic gamma-ray background radiation at $ge0.1~{rm GeV}$. In contrast, particle acceleration in slowly expanding nebulae $lesssim120~{rm km~s^{-1}}$ would be less efficient due to ion-neutral collisions and result in softer spectra at $gtrsim10$ GeV.



قيم البحث

اقرأ أيضاً

We present the results of deep optical spectroscopic observations using the LRIS spectrograph on the Keck I 10-m telescope of three ultra-luminous X-ray sources (ULXs), Ho IX X-1; M81 X-6; and Ho II X-1. Our observations reveal the existence of large (100 - 200 pc diameter) highly-ionized nebulae, identified by diffuse He II (4686 Angstrom) emission, surrounding these sources. Our results are the first to find highly-ionized nebulae of this extent, and the detection in all three objects indicates this may be a common feature of ULXs. In addition to the extended emission, Ho IX X-1 has an unresolved central component containing about one-third of the total He II flux, with a significant velocity dispersion of ~ 370 km/s, suggestive of the existence of a photo-ionized accretion disk or an extremely hot early-type stellar counterpart. Most of the He II emission appears to be surrounded by significantly more extended Hbeta emission, and the intensity ratios between the two lines, which range from 0.12 - 0.33, indicate that photo-ionization is the origin of the He II emission. Sustaining these extended nebulae requires substantial X-ray emission, in the range ~ 10^{39} - 10^{40} ergs/s, comparable to the measured X-ray luminosities of the sources. This favors models where the X-ray emission is isotropic, rather than beamed, which includes the interpretation that ULXs harbor intermediate-mass black holes.
We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space -- unless the baryonic loading is much larger than previously anticipated.
76 - V. Berezinsky , A.Z. Gazizov , 2001
The energy losses and spectra of Ultra High Energy Cosmic Rays (UHECR) are calculated for protons as primary particles. The attention is given to the energy losses due to electron-positron production in collisions with the microwave 2.73 K photons. T he energy spectra are calculated for several models, which differ by production spectra and by source distribution, namely: (i) Uniform distribution of the sources with steep generation spectra with indices 2.4 - 2.7, with cosmological evolution and without it. In this case it is possible to fit the shape of the observed spectrum up to 8.10^{19} eV, but the required CR emissivity is too high and the GZK cutoff is present. (ii) Uniform distribution of the sources with flat generation spectrum dE/E^2 which is relevant to GRBs. The calculated spectrum is in disagreement with the observed one. The agreement at Elesssim 8.10^{19} eV can be reached using a complex generation spectrum, but the required CR emissivity is three orders of magnitude higher than that of GRBs, and the predicted spectrum has the GZK cutoff. (iii) The case of local enhancement within region of size 10 - 30 Mpc with overdensity given by factor 3- 30. The overdensity larger than 10 is needed to eliminate the GZK cutoff.
Gamma-ray observations of microquasars at high and very-high energies can provide valuable information of the acceleration processes inside the jets, the jet-environment interaction and the disk-jet coupling. Two high-mass microquasars have been deep ly studied to shed light on these aspects: Cygnus X-1 and Cygnus X-3. Both systems display the canonical hard and soft X-ray spectral states of black hole transients, where the radiation is dominated by non-thermal emission from the corona and jets and by thermal emission from the disk, respectively. Here, we report on the detection of Cygnus X-1 above 60 MeV using 7.5 yr of Pass8 Fermi-LAT data, correlated with the hard X-ray state. A hint of orbital flux modulation was also found, as the source is only detected in phases around the compact object superior conjunction. We conclude that the high-energy gamma-ray emission from Cygnus X-1 is most likely associated with jets and its detection allow us to constrain the production site. Moreover, we include in the discussion the final results of a MAGIC long-term campaign on Cygnus X-1 that reaches almost 100 hr of observations at different X-ray states. On the other hand, during summer 2016, Cygnus X-3 underwent a flaring activity period in radio and high-energy gamma rays, similar to the one that led to its detection in the high-energy regime in 2009. MAGIC performed comprehensive follow-up observations for a total of about 70 hr. We discuss our results in a multi-wavelength context.
162 - Daniel Kuempel 2014
More than 100 years after the discovery of cosmic rays and various experimental efforts, the origin of ultra-high energy cosmic rays (E > 100 PeV) remains unclear. The understanding of production and propagation effects of these highest energetic par ticles in the universe is one of the most intense research fields of high-energy astrophysics. With the advent of advanced simulation engines developed during the last couple of years, and the increase of experimental data, we are now in a unique position to model source and propagation parameters in an unprecedented precision and compare it to measured data from large scale observatories. In this paper we revisit the most important propagation effects of cosmic rays through photon backgrounds and magnetic fields and introduce recent developments of propagation codes. Finally, by comparing the results to experimental data, possible implications on astrophysical parameters are given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا