ترغب بنشر مسار تعليمي؟ اضغط هنا

Application of Spin-Exchange Relaxation-Free Magnetometry to the Cosmic Axion Spin Precession Experiment

87   0   0.0 ( 0 )
 نشر من قبل Tao Wang Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Cosmic Axion Spin Precession Experiment (CASPEr) seeks to measure oscillating torques on nuclear spins caused by axion or axion-like-particle (ALP) dark matter via nuclear magnetic resonance (NMR) techniques. A sample spin-polarized along a leading magnetic field experiences a resonance when the Larmor frequency matches the axion/ALP Compton frequency, generating precessing transverse nuclear magnetization. Here we demonstrate a Spin-Exchange Relaxation-Free (SERF) magnetometer with sensitivity $approx 1~{rm fT/sqrt{Hz}}$ and an effective sensing volume of 0.1 $rm{cm^3}$ that may be useful for NMR detection in CASPEr. A potential drawback of SERF-magnetometer-based NMR detection is the SERFs limited dynamic range. Use of a magnetic flux transformer to suppress the leading magnetic field is considered as a potential method to expand the SERFs dynamic range in order to probe higher axion/ALP Compton frequencies.



قيم البحث

اقرأ أيضاً

We present calculations of spin-relaxation rates of alkali-metal atoms due to the spin-axis interaction acting in binary collisions between the atoms. We show that for the high-temperature conditions of interest here, the spin relaxation rates calcul ated with classical-path trajectories are nearly the same as those calculated with the distorted-wave Born approximation. We compare these calculations to recent experiments that used magnetic decoupling to isolate spin relaxation due to binary collisions from that due to the formation of triplet van-der-Waals molecules. The values of the spin-axis coupling coefficients deduced from measurements of binary collision rates are consistent with those deduced from molecular decoupling experiments. All the experimental data is consistent with a simple and physically plausible scaling law for the spin-axis coupling coefficients.
We report on the use of radio-frequency optical atomic magnetometers for magnetic induction tomography measurements. We demonstrate the imaging of dummy targets of varying conductivities placed in the proximity of the sensor, in an unshielded environ ment at room-temperature and without background subtraction. The images produced by the system accurately reproduce the characteristics of the actual objects. Furthermore, we perform finite element simulations in order to assess the potential for measuring low-conductivity biological tissues with our system. Our results demonstrate the feasibility of an instrument based on optical atomic magnetometers for magnetic induction tomography imaging of biological samples, in particular for mapping anomalous conductivity in the heart.
131 - A. Korver , R. Wyllie , B. Lancor 2013
We demonstrate that spin-exchange dephasing of Larmor precession at near-earth-scale fields is effectively eliminated by dressing the alkali-metal atom spins in a sequence of AC-coupled 2-pi pulses, repeated at the Larmor precession frequency. The co ntribution of spin-exchange collisions to the spectroscopic line width is reduced by a factor of the duty cycle of the pulses. We experimentally demonstrate resonant transverse pumping in magnetic fields as high as 0.1 Gauss, present experimental measurements of the suppressed spin-exchange relaxation, and show enhanced magnetometer response relative to a light-narrowed scalar magnetometer.
Ions confined using a Paul trap require a stable, high voltage and low noise radio frequency (RF) potential. We present a guide for the design and construction of a helical coil resonator for a desired frequency that maximises the quality factor for a set of experimental constraints. We provide an in-depth analysis of the system formed from a shielded helical coil and an ion trap by treating the system as a lumped element model. This allows us to predict the resonant frequency and quality factor in terms of the physical parameters of the resonator and the properties of the ion trap. We also compare theoretical predictions with experimental data for different resonators, and predict the voltage applied to the ion trap as a function of the Q-factor, input power and the properties of the resonant circuit.
70 - S. Afach , G. Ban , G. Bison 2015
We present a magnetometer based on optically pumped Cs atoms that measures the magnitude and direction of a 1 $mu$T magnetic field. Multiple circularly polarized laser beams were used to probe the free spin precession of the Cs atoms. The design was optimized for long-time stability and achieves a scalar resolution better than 300 fT for integration times ranging from 80 ms to 1000 s. The best scalar resolution of less than 80 fT was reached with integration times of 1.6 to 6 s. We were able to measure the magnetic field direction with a resolution better than 10 $mu$rad for integration times from 10 s up to 2000 s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا