ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of the Iterated Equation of Motion Approach and the Density Matrix Formalism for the Quantum Rabi Model

208   0   0.0 ( 0 )
 نشر من قبل Mona H. Kalthoff
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The density matrix formalism and the equation of motion approach are two semi-analytical methods that can be used to compute the non-equilibrium dynamics of correlated systems. While for a bilinear Hamiltonian both formalisms yield the exact result, for any non-bilinear Hamiltonian a truncation is necessary. Due to the fact that the commonly used truncation schemes differ for these two methods, the accuracy of the obtained results depends significantly on the chosen approach. In this paper, both formalisms are applied to the quantum Rabi model. This allows us to compare the approximate results and the exact dynamics of the system and enables us to discuss the accuracy of the approximations as well as the advantages and the disadvantages of both methods. It is shown to which extent the results fulfill physical requirements for the observables and which properties of the methods lead to unphysical results.



قيم البحث

اقرأ أيضاً

The nonequilibrium dynamics of strongly-correlated fermions in lattice systems have attracted considerable interest in the condensed matter and ultracold atomic-gas communities. While experiments have made remarkable progress in recent years, there r emains a need for the further development of theoretical tools that can account for both the nonequilibrium conditions and strong correlations. For instance, time-dependent theoretical quantum approaches based on the density matrix renormalization group (DMRG) methods have been primarily applied to one-dimensional setups. Recently, two-dimensional quantum simulations of the expansion of fermions based on nonequilibrium Green functions (NEGF) have been presented [Schluenzen et al., Phys. Rev. B 93, 035107 (2016)] that showed excellent agreement with the experiments. Here we present an extensive comparison of the NEGF approach to numerically accurate DMRG results. The results indicate that NEGF are a reliable theoretical tool for weak to intermediate coupling strengths in arbitrary dimensions and make long simulations possible. This is complementary to DMRG simulations which are particularly efficient at strong coupling.
279 - Jaron T. Krogel , Jeongnim Kim , 2014
We develop an energy density matrix that parallels the one-body reduced density matrix (1RDM) for many-body quantum systems. Just as the density matrix gives access to the number density and occupation numbers, the energy density matrix yields the en ergy density and orbital occupation energies. The eigenvectors of the matrix provide a natural orbital partitioning of the energy density while the eigenvalues comprise a single particle energy spectrum obeying a total energy sum rule. For mean-field systems the energy density matrix recovers the exact spectrum. When correlation becomes important, the occupation energies resemble quasiparticle energies in some respects. We explore the occupation energy spectrum for the finite 3D homogeneous electron gas in the metallic regime and an isolated oxygen atom with ground state quantum Monte Carlo techniques implemented in the QMCPACK simulation code. The occupation energy spectrum for the homogeneous electron gas can be described by an effective mass below the Fermi level. Above the Fermi level evanescent behavior in the occupation energies is observed in similar fashion to the occupation numbers of the 1RDM. A direct comparison with total energy differences shows a quantitative connection between the occupation energies and electron addition and removal energies for the electron gas. For the oxygen atom, the association between the ground state occupation energies and particle addition and removal energies becomes only qualitative. The energy density matrix provides a new avenue for describing energetics with quantum Monte Carlo methods which have traditionally been limited to total energies.
156 - Zi-Xiang Hu , Z. Papic , S. Johri 2012
We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We provide convergence benchmarks based on model Hamilton ians known to possess exact zero-energy ground states, as well as an analysis of the number of sweeps and basis elements that need to be kept in order to achieve the desired accuracy.The ground state energies of the Coulomb Hamiltonian at $ u=1/3$ and $ u=5/2$ filling are extracted and compared with the results obtained by previous DMRG implementations in the literature. A remarkably rapid convergence in the cylinder geometry is noted and suggests that this boundary condition is particularly suited for the application of the DMRG method to the FQHE.
244 - L Afanasyev 2004
The evolution of pionium, the $pi^+ pi^-$ hydrogen-like atom, while passing through matter is solved within the density matrix formalism in the first Born approximation. We compare the influence on the pionium break-up probability between the standar d probabilistic calculations and the more precise picture of the density matrix formalism accounting for interference effects. We focus our general result in the particular conditions of the DIRAC experiment at CERN.
The second-order reduced density matrix method (the RDM method) has performed well in determining energies and properties of atomic and molecular systems, achieving coupled-cluster singles and doubles with perturbative triples (CC SD(T)) accuracy wit hout using the wave-function. One question that arises is how well does the RDM method perform with the same conditions that result in CCSD(T) accuracy in the strong correlation limit. The simplest and a theoretically important model for strongly correlated electronic systems is the Hubbard model. In this paper, we establish the utility of the RDM method when employing the $P$, $Q$, $G$, $T1$ and $T2^prime$ conditions in the two-dimension al Hubbard model case and we conduct a thorough study applying the $4times 4$ Hubbard model employing a coefficients. Within the Hubbard Hamilt onian we found that even in the intermediate setting, where $U/t$ is between 4 and 10, the $P$, $Q$, $G$, $T1$ and $T2^prime$ conditions re produced good ground state energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا