ﻻ يوجد ملخص باللغة العربية
We investigate symmetry reduction of optimal control problems for left-invariant control systems on Lie groups, with partial symmetry breaking cost functions. Our approach emphasizes the role of variational principles and considers a discrete-time setting as well as the standard continuous-time formulation. Specifically, we recast the optimal control problem as a constrained variational problem with a partial symmetry breaking Lagrangian and obtain the Euler--Poincare equations from a variational principle. By applying a Legendre transformation to it, we recover the Lie-Poisson equations obtained by A. D. Borum [Masters Thesis, University of Illinois at Urbana-Champaign, 2015] in the same context. We also discretize the variational principle in time and obtain the discrete-time Lie-Poisson equations. We illustrate the theory with some practical examples including a motion planning problem in the presence of an obstacle.
- In this paper we introduce a new method to solve fixed-delay optimal control problems which exploits numerical homotopy procedures. It is known that solving this kind of problems via indirect methods is complex and computationally demanding because
This paper studies an optimal consensus problem for a group of heterogeneous high-order agents with unknown control directions. Compared with existing consensus results, the consensus point is further required to an optimal solution to some distribut
In this paper, we investigate a sparse optimal control of continuous-time stochastic systems. We adopt the dynamic programming approach and analyze the optimal control via the value function. Due to the non-smoothness of the $L^0$ cost functional, in
This paper introduces and studies the optimal control problem with equilibrium constraints (OCPEC). The OCPEC is an optimal control problem with a mixed state and control equilibrium constraint formulated as a complementarity constraint and it can be
We consider the problem of optimally insulating a given domain $Omega$ of ${mathbb{R}}^d$; this amounts to solve a nonlinear variational problem, where the optimal thickness of the insulator is obtained as the boundary trace of the solution. We deal