ﻻ يوجد ملخص باللغة العربية
A vortex coronagraph is now available for high contrast observations with the Keck/NIRC2 instrument at L band. Reaching the optimal performance of the coronagraph requires fine control of the wavefront incident on the phase mask. In particular, centering errors can lead to significant stellar light leakage that degrades the contrast performance and prevents the observation of faint planetary companions around the observed stars. It is thus critical to correct for the possible slow drift of the star image from the phase mask center, generally due to mechanical flexures induced by temperature and/or gravity field variation, or to misalignment between the optics that rotate in pupil tracking mode. A control loop based on the QACITS algorithm for the vortex coronagraph has thus been developed and deployed for the Keck/NIRC2 instrument. This algorithm executes the entire observing sequence, including the calibration steps, initial centering of the star on the vortex center and stabilisation during the acquisition of science frames. On-sky data show that the QACITS control loop stabilizes the position of the star image down to 2.4 mas rms at a frequency of about 0.02 Hz. However, the accuracy of the estimator is probably limited by a systematic error due to a misalignment of the Lyot stop with respect to the entrance pupil, estimated to be on the order of 4.5 mas. A method to reduce the amplitude of this bias down to 1 mas is proposed. The QACITS control loop has been successfully implemented and provides a robust method to center and stabilize the star image on the vortex mask. In addition, QACITS ensures a repeatable pointing quality and significantly improves the observing efficiency compared to manual operations. It is now routinely used for vortex coronagraph observations at Keck/NIRC2, providing contrast and angular resolution capabilities suited for exoplanet and disk imaging.
Vortex coronagraphs have been shown to be a promising avenue for high-contrast imaging in the close-in environment of stars at thermal infrared (IR) wavelengths. They are included in the baseline design of METIS. To ensure good performance of these c
Reference star differential imaging (RDI) is a powerful strategy for high contrast imaging. Using example observations taken with the vortex coronagraph mode of Keck/NIRC2 in $L^prime$ band, we demonstrate that RDI provides improved sensitivity to po
The vector vortex coronagraph is an instrument designed for direct detection and spectroscopy of exoplanets over a broad spectral range. Our team is working towards demonstrating contrast performance commensurate with imaging temperate, terrestrial p
We present observations of the nearby (D$sim$100,pc) Herbig star HD~163296 taken with the vortex coronograph at Keck/NIRC2 in the L band (3.7~$mu$m), to search for planetary mass companions in the ringed disc surrounding this pre-main sequence star.
The behavior of an adaptive optics (AO) system for ground-based high contrast imaging (HCI) dictates the achievable contrast of the instrument. In conditions where the coherence time of the atmosphere is short compared to the speed of the AO system,