ترغب بنشر مسار تعليمي؟ اضغط هنا

Haldane Topological Orders in Motzkin Spin Chains

128   0   0.0 ( 0 )
 نشر من قبل Luca Barbiero
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motzkin spin chains are frustration-free models whose ground-state is a combination of Motzkin paths. The weight of such path contributions can be controlled by a deformation parameter t. As a function of the latter these models, beside the formation of domain wall structures, exhibit a Berezinskii-Kosterlitz-Thouless phase transition for t=1 and gapped Haldane topological orders with constant decay of the string order parameters for t < 1. By means of numerical calculations we show that the topological properties of the Haldane phases depend on the spin value. This allows to classify different kinds of hidden antiferromagnetic Haldane gapped regimes associated to nontrivial features like symmetry-protected topological order. Our results from one side allow to clarify the physical properties of Motzkin frustration-free chains and from the other suggest them as a new interesting and paradigmatic class of local spin Hamiltonians.



قيم البحث

اقرأ أيضاً

68 - Luca DellAnna 2019
We derive some entanglement properties of the ground states of two classes of quantum spin chains described by the Fredkin model, for half-integer spins, and the Motzkin model, for integer ones. Since the ground states of the two models are known ana lytically, we can calculate the entanglement entropy, the negativity and the quantum mutual information exactly. We show, in particular, that these systems exhibit long-distance entanglement, namely two disjoint regions of the chains remain entangled even when the separation is sent to infinity, i.e. these systems are not affected by decoherence. This strongly entangled behavior, occurring both for colorf
The Motzkin and Fredkin quantum spin chains are described by frustration-free Hamiltonians recently introduced and studied because of their anomalous behaviors in the correlation functions and in the entanglement properties. In this paper we analyze their quantum dynamical properties, focusing in particular on the time evolution of the excitations driven by a quantum quench, looking at the correlations functions of spin operators defined along different directions, and discussing the results in relation with the cluster decomposition property.
We study quantum phase transitions between competing orders in one-dimensional spin systems. We focus on systems that can be mapped to a dual-field double sine-Gordon model as a bosonized effective field theory. This model contains two pinning potent ial terms of dual fields that stabilize competing orders and allows different types of quantum phase transition to happen between two ordered phases. At the transition point, elementary excitations change from the topological soliton of one of the dual fields to that of the other, thus it can be characterized as a topological transition. We compute the dynamical susceptibilities and the entanglement entropy, which gives us access to the central charge, of the system using a numerical technique of infinite time-evolving block decimation and characterize the universality class of the transition as well as the nature of the order in each phase. The possible realizations of such transitions in experimental systems both for condensed matter and cold atomic gases are also discussed.
311 - Ze Lei , Werner Krauth 2017
We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin models in the presence of topological excitations. In the two-dimensional XY model, we show that the local nature of the Markov-chain dynamics leads to slow decay of vortex-antivortex correlations while spin waves decorrelate very quickly. Using a Frechet description of the maximum vortex-antivortex distance, we quantify the contributions of topological excitations to the equilibrium correlations, and show that they vary from a dynamical critical exponent z sim 2 at the critical temperature to z sim 0 in the limit of zero temperature. We confirm the event-chain algorithms fast relaxation (corresponding to z = 0) of spin waves in the harmonic approximation to the XY model. Mixing times (describing the approach towards equilibrium from the least favorable initial state) however remain much larger than equilibrium correlation times at low temperatures. We also describe the respective influence of topological monopole-antimonopole excitations and of spin waves on the event-chain dynamics in the three-dimensional Heisenberg model.
This review summarizes recent advances in our understanding of anomalous transport in spin chains, viewed through the lens of integrability. Numerical advances, based on tensor-network methods, have shown that transport in many canonical integrable s pin chains -- most famously the Heisenberg model -- is anomalous. Concurrently, the framework of generalized hydrodynamics has been extended to explain some of the mechanisms underlying anomalous transport. We present what is currently understood about these mechanisms, and discuss how they resemble (and differ from) the mechanisms for anomalous transport in other contexts. We also briefly review potential transport anomalies in systems where integrability is an emergent or approximate property. We survey instances of anomalous transport and dynamics that remain to be understood.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا