ﻻ يوجد ملخص باللغة العربية
Ultrafast plasmonics of novel materials has emerged as a promising field of nanophotonics bringing new concepts for advanced optical applications. Ultrafast electronic photoexcitation of a diamond surface and subsequent surface plasmon-polaritons (SPPs) excitation are studied both theoretically and experimentally - for the first time. After photoexcitation on the rising edge of the pulse, transient surface metallization was found to occur for laser intensity near 18 TW/cm$^2$ due to enhancement of the impact ionization rate; in this regime, the dielectric constant of the photoexcited diamond becomes negative in the trailing edge of the pulse thereby increasing the efficacy with which surface roughness leads to inhomogeneous energy absorption at the SPP wave-vector. These transient SPP waves imprint permanent fine and coarse surface ripples oriented perpendicularly to the laser polarization. The theoretical modeling is supported by the experiments on the generation of laser-induced periodic surface structure on diamond surface with normally incident 515-nm, 200-fs laser pulses. Sub-wavelength ($Lambda approx 100$ nm) and near wavelength ($Lambda approx 450$ nm) surface ripples oriented perpendicularly to the laser polarization emerged within the ablative craters with the increased number of laser shots; the spatial periods of the surface ripples decrease with the increasing exposure following known cumulative trends. The comparison between experimental data and theoretical predictions makes evident the role of transient changes of the dielectric permittivity of diamond during the initial stage of periodic surface ripple formation upon irradiation with ultrashort laser pulses.
The accurate calculation of laser energy absorption during femto- or picosecond laser pulse experiments is very important for the description of the formation of periodic surface structures. On a rough material surface, a crack or a step edge, ultras
We propose a plasmonic device consisting of a concentric ring grating acting as an efficient tool for directional launching and detection of surface plasmon-polaritons (SPPs). Numerical simulations and optical characterizations are used to study the
We have observed laser-like emission of surface plasmon polaritons (SPPs) decoupled to the glass prism in an attenuated total reflection setup. SPPs were excited by optically pumped molecules in a polymeric film deposited on the top of the silver fil
Surface plasmon polaritons in a strained slab of a Weyl semimetal with broken time-reversal symmetry are investigated. It is found that the strain-induced axial gauge field reduces frequencies of these collective modes for intermediate values of the
We study a surface plasmon polariton mode that is strongly confined in the transverse direction and propagates along a periodically nanostructured metal-dielectric interface. We show that the wavelength of this mode is determined by the period of the