ﻻ يوجد ملخص باللغة العربية
In this paper we establish a framework for normal approximation for white noise functionals by Steins method and Hida calculus. Our work is inspired by that of Nourdin and Peccati (Probab. Theory Relat. Fields 145, 75-118, 2009), who combined Steins method and Malliavin calculus for normal approximation for functionals of Gaussian processes.
We combine Steins method with Malliavin calculus in order to obtain explicit bounds in the multidimensional normal approximation (in the Wasserstein distance) of functionals of Gaussian fields. Our results generalize and refine the main findings by P
We obtain explicit error bounds for the $d$-dimensional normal approximation on hyperrectangles for a random vector that has a Stein kernel, or admits an exchangeable pair coupling, or is a non-linear statistic of independent random variables or a su
Using Steins method techniques, we develop a framework which allows one to bound the error terms arising from approximation by the Laplace distribution and apply it to the study of random sums of mean zero random variables. As a corollary, we deduce
Steins method has been widely used for probability approximations. However, in the multi-dimensional setting, most of the results are for multivariate normal approximation or for test functions with bounded second- or higher-order derivatives. For a
In this note, we apply Steins method to analyze the steady-state distribution of queueing systems in the traditional heavy-traffic regime. Compared to previous methods (e.g., drift method and transform method), Steins method allows us to establish st