ﻻ يوجد ملخص باللغة العربية
In this paper, we study the geometry of various Hessenberg varieties in type A, as well as families thereof, with the additional goal of laying the groundwork for future computations of Newton-Okounkov bodies of Hessenberg varieties. Our main results are as follows. We find explicit and computationally convenient generators for the local defining ideals of indecomposable regular nilpotent Hessenberg varieties, and then show that all regular nilpotent Hessenberg varieties are local complete intersections. We also show that certain families of Hessenberg varieties, whose generic fibers are regular semisimple Hessenberg varieties and the special fiber is a regular nilpotent Hessenberg variety, are flat and have reduced fibres. This result further allows us to give a computationally effective formula for the degree of a regular nilpotent Hessenberg variety with respect to a Plucker embedding. Furthermore, we construct certain flags of subvarieties of a regular nilpotent Hessenberg variety, obtained by intersecting with Schubert varieties, which are suitable for computing Newton-Okounkov bodies. As an application of our results, we explicitly compute many Newton-Okounkov bodies of the two-dimensional Peterson variety with respect to Plucker embeddings.
Tropical geometry and the theory of Newton-Okounkov bodies are two methods which produce toric degenerations of an irreducible complex projective variety. Kaveh-Manon showed that the two are related. We give geometric maps between the Newton-Okounkov
The main result of this note is that the toric degenerations of flag varieties associated to string polytopes and certain Bott-Samelson resolutions of flag varieties fit into a commutative diagram which gives a resolution of singularities of singular
We show that quite universally the holonomicity of the complexity function of a big divisor on a projective variety does not predict the polyhedrality of the Newton-Okounkov body associated to every flag.
We compute the Newton--Okounkov bodies of line bundles on the complete flag variety of GL_n for a geometric valuation coming from a flag of translated Schubert subvarieties. The Schubert subvarieties correspond to the terminal subwords in the decompo
This paper studies the geometry and combinatorics of three interrelated varieties: Springer fibers, Steinberg varieties, and parabolic Hessenberg varieties. We prove that each parabolic Hessenberg variety is the pullback of a Steinberg variety under