ترغب بنشر مسار تعليمي؟ اضغط هنا

Screening, Hyperuniformity, and Instability in the Sedimentation of Irregular Objects

101   0   0.0 ( 0 )
 نشر من قبل Tomer Goldfriend
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the overdamped sedimentation of non-Brownian objects of irregular shape using fluctuating hydrodynamics. The anisotropic response of the objects to flow, caused by their tendency to align with gravity, directly suppresses concentration and velocity fluctuations. This allows the suspension to avoid the anomalous fluctuations predicted for suspensions of symmetric spheroids. The suppression of concentration fluctuations leads to a correlated, hyperuniform structure. For certain object shapes, the anisotropic response may act in the opposite direction, destabilizing uniform sedimentation.



قيم البحث

اقرأ أيضاً

78 - Jikai Wang , J. M. Schwarz , 2017
Particle suspensions, present in many natural and industrial settings, typically contain aggregates or other microstructures that can complicate macroscopic flow behaviors and damage processing equipment. Recent work found that applying uniform perio dic shear near a critical transition can reduce fluctuations in the particle concentration across all length scales, leading to a hyperuniform state. However, this strategy for homogenization requires fine tuning of the strain amplitude. Here we show that in a model of sedimenting particles under periodic shear, there is a well-defined regime at low sedimentation speed where hyperuniform scaling automatically occurs. Our simulations and theoretical arguments show that the homogenization extends up to a finite lengthscale that diverges as the sedimentation speed approaches zero.
Ensembles of particles rotating in a two-dimensional fluid can exhibit chaotic dynamics yet develop signatures of hidden order. Such rotors are found in the natural world spanning vastly disparate length scales - from the rotor proteins in cellular m embranes to models of atmospheric dynamics. Here we show that an initially random distribution of either ideal vortices in an inviscid fluid, or driven rotors in a viscous membrane, spontaneously self assembles. Despite arising from drastically different physics, these systems share a Hamiltonian structure that sets geometrical conservation laws resulting in distinct structural states. We find that the rotationally invariant interactions isotropically suppress long wavelength fluctuations - a hallmark of a disordered hyperuniform material. With increasing area fraction, the system orders into a hexagonal lattice. In mixtures of two co-rotating populations, the stronger population will gain order from the other and both will become phase enriched. Finally, we show that classical 2D point vortex systems arise as exact limits of the experimentally accessible microscopic membrane rotors, yielding a new system through which to study topological defects.
We study theoretically the chirality of a generic rigid objects sedimentation in a fluid under gravity in the low Reynolds number regime. We represent the object as a collection of small Stokes spheres or stokeslets, and the gravitational force as a constant point force applied at an arbitrary point of the object. For a generic configuration of stokeslets and forcing point, the motion takes a simple form in the nearly free draining limit where the stokeslet radius is arbitrarily small. In this case, the internal hydrodynamic interactions between stokeslets are weak, and the object follows a helical path while rotating at a constant angular velocity $omega$ about a fixed axis. This $omega$ is independent of initial orientation, and thus constitutes a chiral response for the object. Even though there can be no such chiral response in the absence of hydrodynamic interactions between the stokeslets, the angular velocity obtains a fixed, nonzero limit as the stokeslet radius approaches zero. We characterize empirically how $omega$ depends on the placement of the stokeslets, concentrating on three-stokeslet objects with the external force applied far from the stokeslets. Objects with the largest $omega$ are aligned along the forcing direction. In this case, the limiting $omega$ varies as the inverse square of the minimum distance between stokeslets. We illustrate the prevalence of this robust chiral motion with experiments on small macroscopic objects of arbitrary shape.
This work is concerned with the mathematical analysis of the bulk rheology of random suspensions of rigid particles settling under gravity in viscous fluids. Each particle generates a fluid flow that in turn acts on other particles and hinders their settling. In an equilibrium perspective, for a given ensemble of particle positions, we analyze both the associated mean settling speed and the velocity fluctuations of individual particles. In the 1970s, Batchelor gave a proper definition of the mean settling speed, a 60-year-old open problem in physics, based on the appropriate renormalization of long-range particle contributions. In the 1980s, a celebrated formal calculation by Caflisch and Luke suggested that velocity fluctuations in dimension $d=3$ should diverge with the size of the sedimentation tank, contradicting both intuition and experimental observations. The role of long-range self-organization of suspended particles in form of hyperuniformity was later put forward to explain additional screening of this divergence in steady-state observations. In the present contribution, we develop the first rigorous theory that allows to justify all these formal calculations of the physics literature.
The phenomenon of shear-induced jamming is a factor in the complex rheological behavior of dense suspensions. Such shear-jammed states are fragile, i.e., they are not stable against applied stresses that are incompatible with the stress imposed to cr eate them. This peculiar flow-history dependence of the stress response is due to flow-induced microstructures. To examine jammed states realized under constant shear stress, we perform dynamic simulations of non-Brownian particles with frictional contact forces and hydrodynamic lubrication forces. We find clear signatures that distinguish these fragile states from the more conventional isotropic jammed states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا