ترغب بنشر مسار تعليمي؟ اضغط هنا

Results from the DM-Ice17 Dark Matter Experiment at the South Pole

260   0   0.0 ( 0 )
 نشر من قبل Jay Hyun Jo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jay Hyun Jo




اسأل ChatGPT حول البحث

DM-Ice is a phased experimental program using low-background NaI(Tl) crystals with the aim to unambiguously test the claim of dark matter detection by the DAMA experiments. DM-Ice17, consisting of 17 kg of NaI(Tl), has been continuously operating at a depth of 2457 m in the South Pole ice for over five years, demonstrating the feasibility of a low-background experiment in the Antarctic ice. Studies of low and high energy spectra, an annual modulation analysis, and a WIMP exclusion limit based on the physics run of DM-Ice17 are presented. We also discuss the plan and projected sensitivity of a new joint physics run, COSINE-100, with upgraded detectors at the Yangyang Underground Laboratory in Korea.



قيم البحث

اقرأ أيضاً

We present the first search for a dark matter annual modulation signal in the Southern Hemisphere conducted with NaI(Tl) detectors, performed by the DM-Ice17 experiment. Nuclear recoils from dark matter interactions are expected to yield an annually modulated signal independent of location within the Earths hemispheres. DM-Ice17, the first step in the DM-Ice experimental program, consists of 17 kg of NaI(Tl) located at the South Pole under 2200 m.w.e. overburden of Antarctic glacial ice. Taken over 3.6 years for a total exposure of 60.8 kg yr, DM-Ice17 data are consistent with no modulation in the energy range of 4-20 keV, providing the strongest limits on weakly interacting massive particle dark matter from a direct detection experiment located in the Southern Hemisphere. The successful deployment and stable long-term operation of DM-Ice17 establishes the South Pole ice as a viable location for future dark matter searches and in particular for a high-sensitivity NaI(Tl) dark matter experiment to directly test the DAMA/LIBRA claim of the observation of dark matter.
We report the measurement of muons and muon-induced phosphorescence in DM-Ice17, a NaI(Tl) direct detection dark matter experiment at the South Pole. Muon interactions in the crystal are identified by their observed pulse shape and large energy depos itions. The measured muon rate in DM-Ice17 is 2.93 +/- 0.04 muons/crystal/day with a modulation amplitude of 12.3 +/- 1.7%, consistent with expectation. Following muon interactions, we observe long-lived phosphorescence in the NaI(Tl) crystals with a decay time of 5.5 +/- 0.5 s. The prompt energy deposited by a muon is correlated to the amount of delayed phosphorescence, the brightest of which consist of tens of millions of photons. These photons are distributed over tens of seconds with a rate and arrival timing that do not mimic a scintillation signal above 2 keVee. While the properties of phosphorescence vary among individual crystals, the annually-modulating signal observed by DAMA cannot be accounted for by phosphorescence with the characteristics observed in DM-Ice17.
LUX, the worlds largest dual-phase xenon time-projection chamber, with a fiducial target mass of 118 kg and 10,091 kg-days of exposure thus far, is currently the most sensitive direct dark matter search experiment. The initial null-result limit on th e spin-independent WIMP-nucleon scattering cross-section was released in October 2013, with a primary scintillation threshold of 2 phe, roughly 3 keVnr for LUX. The detector has been deployed at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, and is the first experiment to achieve a limit on the WIMP cross-section lower than $10^{-45}$ cm$^{2}$. Here we present a more in-depth discussion of the novel energy scale employed to better understand the nuclear recoil light and charge yields, and of the calibration sources, including the new internal tritium source. We found the LUX data to be in conflict with low-mass WIMP signal interpretations of other results.
We report the first analysis of background data from DM-Ice17, a direct-detection dark matter experiment consisting of 17 kg of NaI(Tl) target material. It was codeployed with IceCube 2457 m deep in the South Pole glacial ice in December 2010 and is the first such detector operating in the Southern Hemisphere. The background rate in the 6.5 - 8.0 keVee region is measured to be 7.9 +/- 0.4 counts/day/keV/kg. This is consistent with the expected background from the detector assemblies with negligible contributions from the surrounding ice. The successful deployment and operation of DM-Ice17 establishes the South Pole ice as a viable location for future underground, low-background experiments in the Southern Hemisphere. The detector assembly and deployment are described here, as well as the analysis of the DM-Ice17 backgrounds based on data from the first two years of operation after commissioning, July 2011 - June 2013.
The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiments expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on M onte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in $1$ tonne fiducial volume and ($1$, $12$) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is $(1.80 pm 0.15) cdot 10^{-4}$ ($rm{kg} cdot day cdot keV)^{-1}$, mainly due to the decay of $^{222}rm{Rn}$ daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region ($4$, $50$) keV, is composed of $(0.6 pm 0.1)$ ($rm{t} cdot y)^{-1}$ from radiogenic neutrons, $(1.8 pm 0.3) cdot 10^{-2}$ ($rm{t} cdot y)^{-1}$ from coherent scattering of neutrinos, and less than $0.01$ ($rm{t} cdot y)^{-1}$ from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency $mathcal{L}_mathrm{eff}$, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a $2$ y measurement in $1$ t fiducial volume, the sensitivity reaches a minimum cross section of $1.6 cdot 10^{-47}$ cm$^2$ at m$_chi$=$50$ GeV/$c^2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا