ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection prospects for high energy neutrino sources from the anisotropic matter distribution in the local universe

78   0   0.0 ( 0 )
 نشر من قبل Philipp Mertsch
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Constraints on the number and luminosity of the sources of the cosmic neutrinos detected by IceCube have been set by targeted searches for point sources. We set complementary constraints by using the 2MASS Redshift Survey (2MRS) catalogue, which maps the matter distribution of the local Universe. Assuming that the distribution of the neutrino sources follows that of matter we look for correlations between `warm spots on the IceCube skymap and the 2MRS matter distribution. Through Monte Carlo simulations of the expected number of neutrino multiplets and careful modelling of the detector performance (including that of IceCube-Gen2) we demonstrate that sources with local density exceeding $10^{-6} , text{Mpc}^{-3}$ and neutrino luminosity $L_{ u} lesssim 10^{42} , text{erg} , text{s}^{-1}$ ($10^{41} , text{erg} , text{s}^{-1}$) will be efficiently revealed by our method using IceCube (IceCube-Gen2). At low luminosities such as will be probed by IceCube-Gen2, the sensitivity of this analysis is superior to requiring statistically significant direct observation of a point source.



قيم البحث

اقرأ أيضاً

170 - A.Marinelli , N.Fraija 2014
Fanaroff-Riley I radiogalaxies have been observed in TeV gamma-rays during the last decades. The origin of the emission processes related with this energy band is still under debate. Here we consider the case of the two closest Fanaroff-Riley I objec ts: Centaurus A and M87. Their entire broadband spectral energy distributions and variability fluxes show evidences that leptonic models are not sufficient to explain their fluxes above 100 GeV. Indeed, both objects have been imaged by LAT instrument aboard of Fermi telescope with measured spectra well connected with one-zone leptonic models. However, to explain the TeV spectra obtained with campaigns by H.E.S.S., for Centaurus A, and by VERITAS, MAGIC and H.E.S.S. for M87, different emission processes must be introduced. In this work we evoke hadronic scenarios to describe the TeV gamma-ray fluxes observed and to obtain the expected neutrino counterparts for each considered TeV campaign. With the obtained neutrino spectra we calculate, through Monte Carlo simulations, the expected neutrino event rate in a hypothetical Km$^{3}$ neutrino telescope and we compare the results with what has been observed by IceCube experiment up to now.
182 - Pierre Brun 2013
The high-energy Universe is potentially a great laboratory for searching new light bosons such as axion-like particles (ALPs). Cosmic sources are indeed the scene of violent phenomena that involve strong magnetic field and/or very long baselines, whe re the effects of the mixing of photons with ALPs could lead to observable effects. Two examples are archetypal of this fact, that are the Universe opacity to gamma-rays and the imprints of astrophysical magnetic turbulence in the energy spectra of high-energy sources. In the first case, hints for the existence of ALPs can be proposed whereas the second one is used to put constraints on the ALP mass and coupling to photons.
The munuSSM is a supersymmetric model that has been proposed to solve the problems generated by other supersymmetric extensions of the standard model of particle physics. Given that R-parity is broken in the munuSSM, the gravitino is a natural candid ate for decaying dark matter since its lifetime becomes much longer than the age of the Universe. In this model, gravitino dark matter could be detectable through the emission of a monochromatic gamma ray in a two-body decay. We study the prospects of the Fermi-LAT telescope to detect such monochromatic lines in 5 years of observations of the most massive nearby extragalactic objects. The dark matter halo around the Virgo galaxy cluster is selected as a reference case, since it is associated to a particularly high signal-to-noise ratio and is located in a region scarcely affected by the astrophysical diffuse emission from the galactic plane. The simulation of both signal and background gamma-ray events is carried out with the Fermi Science Tools, and the dark matter distribution around Virgo is taken from a N-body simulation of the nearby extragalactic Universe, with constrained initial conditions provided by the CLUES project. We find that a gravitino with a mass range of 0.6 to 2 GeV, and with a lifetime range of about 3x10^27 to 2x10^28 s would be detectable by the Fermi-LAT with a signal-to-noise ratio larger than 3. We also obtain that gravitino masses larger than about 4 GeV are already excluded in the munuSSM by Fermi-LAT data of the galactic halo
Sterile neutrinos comprise an entire class of dark matter models that, depending on their production mechanism, can be hot, warm, or cold dark matter. We simulate the Local Group and representative volumes of the Universe in a variety of sterile neut rino models, all of which are consistent with the possible existence of a radiative decay line at ~3.5 keV. We compare models of production via resonances in the presence of a lepton asymmetry (suggested by Shi & Fuller 1999) to thermal models. We find that properties in the highly nonlinear regime - e.g., counts of satellites and internal properties of halos and subhalos - are insensitive to the precise fall-off in power with wavenumber, indicating that nonlinear evolution essentially washes away differences in the initial (linear) matter power spectrum. In the quasi-linear regime at higher redshifts, however, quantitative differences in the 3D matter power spectra remain, raising the possibility that such models can be tested with future observations of the Lyman-alpha forest. While many of the sterile neutrino models largely eliminate multiple small-scale issues within the Cold Dark Matter (CDM) paradigm, we show that these models may be ruled out in the near future via discoveries of additional dwarf satellites in the Local Group.
We study a Dark Matter (DM) model in which the dominant coupling to the standard model occurs through a neutrino-DM-scalar coupling. The new singlet scalar will generically have couplings to nuclei/electrons arising from renormalizable Higgs portal i nteractions. As a result the DM particle $X$ can convert into a neutrino via scattering on a target nucleus $mathcal{N}$: $ X + mathcal{N} rightarrow u + mathcal{N}$, leading to striking signatures at direct detection experiments. Similarly, DM can be produced in neutrino scattering events at neutrino experiments: $ u + mathcal{N} rightarrow X + mathcal{N}$, predicting spectral distortions at experiments such as COHERENT. Furthermore, the model allows for late kinetic decoupling of dark matter with implications for small-scale structure. At low masses, we find that COHERENT and late kinetic decoupling produce the strongest constraints on the model, while at high masses the leading constraints come from DM down-scattering at XENON1T and Borexino. Future improvement will come from CE$ u$NS data, ultra-low threshold direct detection, and rare kaon decays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا