ترغب بنشر مسار تعليمي؟ اضغط هنا

A Boost to $h to Z gamma$: from LHC to Future $e^+ e^-$ Colliders

197   0   0.0 ( 0 )
 نشر من قبل Jose Miguel No
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A precise measurement of the Higgs $h to Z gamma$ decay is very challenging at the LHC, due to the very low %SM $h to Z gamma, (Z to ell ell)$ branching fraction and the shortage of kinematic handles to suppress the large SM $Z gamma$ background. We show how such a measurement would be significantly improved by considering Higgs production in association with a hard jet. We compare the prospective HL-LHC sensitivity in this channel with other Higgs production modes where $h$ is fairly boosted, e.g.~weak boson fusion, and also to the potential $h to Z gamma$ measurement achievable with a future $e^{+}e^{-}$ circular collider ({sl fcc-ee}). Finally, we discuss new physics implications of a precision measurement of $h to Z gamma$.



قيم البحث

اقرأ أيضاً

Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300/fb of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10/fb of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, the Working Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.
71 - Andrej Arbuzov 2021
Electroweak radiative corrections to the cross section of the process $e^+ e^- to Z H$ are considered. The complete one-loop electroweak radiative corrections are evaluated with the help of the SANC system. Higher-order contributions of the initial s tate radiation are computed in the QED structure function formalism. Numerical results are produced by a new version of the ReneSANCe event generator and MCSANCee integrator for the conditions of future electron-positron colliders. The resulting theoretical uncertainty in the description of this process is estimated.
We study the process $e^-e^+to gamma H$, where $H$ represents $H_{SM}$, $h^0$ or $H^0$, which occurs at the one loop level in the standard model (SM) or in the minimal supersymmetric standard model (MSSM). We establish supersimple (sim) high energy e xpressions for all helicity amplitudes of this process, and we identify their level of accuracy for describing the various polarized and unpolarized observables, and for distinguishing SM from MSSM or another beyond the standard model (BSM). We pay a special attention to transverse electron-positron polarizations and azimuthal dependencies induced by the imaginary parts of the amplitudes, which are relatively important in this process.
One of the primary goals of the proposed future collider experiments is to search for dark matter (DM) particles using different experimental approaches. High energy $e^+e^-$ colliders offer unique possibility for the most general search based on the mono-photon signature. As any $e^+e^-$ collision process may include hard initial-state photon radiation, analysis of the energy spectrum and angular distributions of observed photons can be used to search for hard processes with an invisible final state. Dedicated procedure of merging the matrix element calculations with the lepton ISR structure function was developed to model the Standard Model background processes contributing to mono-photon signature with WHIZARD. In this work, we consider production of DM particles at the International Linear Collider (ILC) and Compact Linear Collider (CLIC) experiments via a mediator exchange. Detector effects are taken into account within the DELPHES fast simulation framework. Limits on the light DM production in a simplified model are set as a function of the mediator mass and width based on the expected two-dimensional distributions of the reconstructed mono-photon events. The experimental sensitivity is extracted in terms of the DM production cross section. Limits on the mediator couplings are then presented for a wide range of mediator masses and widths. For light mediators, for masses up to the centre-of-mass energy of the collider, coupling limits derived from the mono-photon analysis are more stringent than those expected from direct resonance searches in decay channels to SM particles.
For the search for additional Higgs bosons in the Minimal Supersymmetric Standard Model (MSSM) as well as for future precision analyses in the Higgs sector a precise knowledge of their production properties is mandatory. We review the evaluation of t he cross sections for the neutral Higgs boson production in association with a photon at future $e^+e^-$ colliders in the MSSM with complex parameters (cMSSM). The evaluation is based on a full one-loop calculation of the production mechanism $e^+e^- to h_i gamma$ ($i = 1,2,3$). The dependence of the lightest Higgs-boson production cross sections on the relevant cMSSM parameters is analyzed numerically. We find relatively small numerical depedences of the production cross sections on the underlying parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا