ﻻ يوجد ملخص باللغة العربية
Dimensionality reduction and matrix factorization techniques are important and useful machine-learning techniques in many fields. Nonnegative matrix factorization (NMF) is particularly useful for spectral analysis and image processing in astronomy. I present the vectorized update rules and an independent proof of their convergence for NMF with heteroscedastic measurements and missing data. I release a Python implementation of the rules and use an optical spectroscopic dataset of extragalactic sources as an example for demonstration. A future paper will present results of applying the technique to image processing of planetary disks.
The angular differential imaging (ADI) is used to improve contrast in high resolution astronomical imaging. An example is the direct imaging of exoplanet in camera fed by Extreme Adaptive Optics. The subtraction of the main dazzling object to observe
Matrix factorization (MF) has been widely used to discover the low-rank structure and to predict the missing entries of data matrix. In many real-world learning systems, the data matrix can be very high-dimensional but sparse. This poses an imbalance
In this paper, we present several descent methods that can be applied to nonnegative matrix factorization and we analyze a recently developped fast block coordinate method called Rank-one Residue Iteration (RRI). We also give a comparison of these di
In the Nonnegative Matrix Factorization (NMF) problem we are given an $n times m$ nonnegative matrix $M$ and an integer $r > 0$. Our goal is to express $M$ as $A W$ where $A$ and $W$ are nonnegative matrices of size $n times r$ and $r times m$ respec
Fully unsupervised topic models have found fantastic success in document clustering and classification. However, these models often suffer from the tendency to learn less-than-meaningful or even redundant topics when the data is biased towards a set