ﻻ يوجد ملخص باللغة العربية
Further development of quantum emitter based communication and sensing applications intrinsically depends on the availability of robust single-photon detectors. Here, we demonstrate a new generation of superconducting single-photon detectors specifically optimized for the 500-1100 nm wavelength range, which overlaps with the emission spectrum of many interesting solid-state atom-like systems, such as nitrogen-vacancy and silicon-vacancy centers in diamond. The fabricated detectors have a wide dynamic range (up to 350 million counts per second), low dark count rate (down to 0.1 counts per second), excellent jitter (62 ps), and the possibility of on-chip integration with a quantum emitter. In addition to performance characterization, we tested the detectors in real experimental conditions involving nanodiamond nitrogen-vacancy emitters enhanced by a hyperbolic metamaterial.
We report the detection of individual emitters in silicon belonging to seven different families of optically-active point defects. These fluorescent centers are created by carbon implantation of a commercial silicon-on-insulator wafer usually employe
We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous WSi and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark nois
In this paper, we study the optical properties of single defects emitting in the near infrared in nanodiamonds at liquid helium temperature. The nanodiamonds are synthesized using a microwave chemical vapor deposition method followed by nickel implan
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared. The challenging task of revealing non-classicality in mid-infrared light, e.~g. in quantum cascade lasers emission, requires a high-performance detec
Superconducting nanostrip photon detectors have been used as single photon detectors, which can discriminate only photons presence or absence. It has recently been found that they can discriminate the number of photons by analyzing the output signal