ﻻ يوجد ملخص باللغة العربية
Random tensor models are generalizations of random matrix models which admit $1/N$ expansions. In this article we show that the topological recursion, a modern approach to matrix models which solves the loop equations at all orders, is also satisfied in some tensor models. While it is obvious in some tensor models which are matrix models in disguise, it is far from clear that it can be applied to others. Here we focus on melonic interactions for which the models are best understood, and further restrict to the quartic case. Then Hubbard-Stratonovich transformation maps the tensor model to a multi-matrix model with multi-trace interactions. We study this matrix model and show that after substracting the leading order, it satisfies the blobbed topological recursion. It is a new extension of the topological recursion, recently introduced by Borot and further studied by Borot and Shadrin. Here it applies straightforwardly, yet with a novelty as our model displays a disconnected spectral curve, which is the union of several spectral curves of the Gaussian Unitary Ensemble. Finally, we propose a way to evaluate expectations of tensorial observables using the correlation functions computed from the blobbed topological recursion.
Tensor models are generalizations of matrix models and as such, it is a natural question to ask whether they satisfy some form of the topological recursion. The world of unitary-invariant observables is however much richer in tensor models than in ma
We consider the special case of Random Tensor Networks (RTN) endowed with gauge symmetry constraints on each tensor. We compute the R`enyi entropy for such states and recover the Ryu-Takayanagi (RT) formula in the large bond regime. The result provid
We construct the off-shell recursion for gravity and the graviton current for the perturbative double field theory (DFT). We first formulate the perturbative DFT, which is equivalent but simpler to perturbative general relativity, to all-orders in fl
A new systematic approach extending the notion of frames to the Palatini scalar-tensor theories of gravity in various dimensions n>2 is proposed. We impose frame transformation induced by the group action which includes almost-geodesic and conformal
We introduce group field theory networks as a generalization of spin networks and of (symmetric) random tensor networks and provide a statistical computation of the Renyi entropy for a bipartite network state using the partition function of a simple