ﻻ يوجد ملخص باللغة العربية
The introduction of convolutional layers greatly advanced the performance of neural networks on image tasks due to innately capturing a way of encoding and learning translation-invariant operations, matching one of the underlying symmetries of the image domain. In comparison, there are a number of problems in which there are a number of different inputs which are all of the same type --- multiple particles, multiple agents, multiple stock prices, etc. The corresponding symmetry to this is permutation symmetry, in that the algorithm should not depend on the specific ordering of the input data. We discuss a permutation-invariant neural network layer in analogy to convolutional layers, and show the ability of this architecture to learn to predict the motion of a variable number of interacting hard discs in 2D. In the same way that convolutional layers can generalize to different image sizes, the permutation layer we describe generalizes to different numbers of objects.
Existing deep methods produce highly accurate 3D reconstructions in stereo and multiview stereo settings, i.e., when cameras are both internally and externally calibrated. Nevertheless, the challenge of simultaneous recovery of camera poses and 3D sc
Designing an incentive compatible auction that maximizes expected revenue is a central problem in Auction Design. Theoretical approaches to the problem have hit some limits in the past decades and analytical solutions are known for only a few simple
Many machine learning tasks such as multiple instance learning, 3D shape recognition, and few-shot image classification are defined on sets of instances. Since solutions to such problems do not depend on the order of elements of the set, models used
Recently, 3D input data based hand pose estimation methods have shown state-of-the-art performance, because 3D data capture more spatial information than the depth image. Whereas 3D voxel-based methods need a large amount of memory, PointNet based me
A deep neural network model is a powerful framework for learning representations. Usually, it is used to learn the relation $x to y$ by exploiting the regularities in the input $x$. In structured output prediction problems, $y$ is multi-dimensional a