ﻻ يوجد ملخص باللغة العربية
A wealth of experimental data indicate that while capillarity controlled infiltration gives an infiltration length that varies with the square root of time, reactive infiltration is characterised by a linear relationship between the two magnitudes. In addition the infiltration rate in the latter is at least two orders of magnitude greater than in the former. This work is addressed to investigate imbibition of a non-wetting, albeit reactive, liquid into a capillary, within the framework of a simple model that includes capillarity effects, viscosity and gravity. The capillary radius is allowed to vary, due to reaction, with both position and time, according to either an interface or a diffusion law. The model allows for capillary closure when reaction kinetics dominates imbibition. At short times, and depending on whether infiltration is capillarity or gravity controlled, the infiltrated length varies either as the square root or linearly with time. This suggest the following track for reactive infiltration: i) In most cases, the contact angle is initially larger than $90^circ$, ii) after some time, reaction gradually replaces the interface liquid/preform by the liquid/reaction product interface and, concomitantly, the contact angle gets closer to $90^circ$, iii) beyond that time, gravity triggers infiltration (actually the contact angle does not need to be smaller than $90^circ$ for the initiation of infiltration due to the metallostatic pressure exerted by the liquid metal on top of the porous preform), iv) thereafter infiltration is controlled by viscosity and gravity, provided that, due to reaction, the contact angle remains close to that at which infiltration was initiated.
The reactive-infiltration instability, which develops when a porous matrix is dissolved by a flowing fluid, contains two important length scales. Here we outline a linear stability analysis that simultaneously incorporates both scales. We show that t
We discuss hydrodynamic forces acting on a two-dimensional liquid domain that moves laterally within a supported fluid membrane in the presence of odd viscosity. Since active rotating proteins can accumulate inside the domain, we focus on the differe
Crescentic shape dunes, known as barchan dunes, are formed by the action of a fluid flow on a granular bed. These bedforms are common in many environments, existing under water or in air, and being formed from grains organized in different initial ar
We report on how the relaxation of patterns prepared on a thin film can be controlled by manipu- lating the symmetry of the initial shape. The validity of a lubrication theory for the capillary-driven relaxation of surface profiles is verified by ato
As a natural and functional behavior, various microorganisms exhibit gravitaxis by orienting and swimming upwards against gravity. Swimming autophoretic nanomotors described herein, comprising bimetallic nanorods, preferentially orient upwards and sw