The non-Markovian nature of quantum systems recently turned to be a key subject for investigations on open quantum system dynamics. Many studies, from its theoretical grounding to its usefulness as a resource for quantum information processing and experimental demonstrations, have been reported in the literature. Typically, in these studies, a structured reservoir is required to make non-Markovian dynamics to emerge. Here, we investigate the dynamics of a qubit interacting with a bosonic bath and under the injection of a classical stochastic colored noise. A canonical Lindblad-like master equation for the system is derived, using the stochastic wavefunction formalism. Then, the non-Markovianity of the evolution is witnessed using the Andersson, Cresser, Hall and Li measure. We evaluate the measure for three different noises and study the interplay between environment and noise pump necessary to generate quantum non-Markovianity, as well as the energy balance of the system. Finally, we discuss the possibility to experimentally implement the proposed model.