ﻻ يوجد ملخص باللغة العربية
In this paper, three different materials Si, ITO and graphene; and three different types of mode structures bulk, slot and hybrid; based on their electrooptical and electro absorptive aspects in performance are analyzed. The study focuses on three major characteristics of electrooptic tuning, i.e. material, modal and cavity dependency. The materials are characterized with established models and the allowed ranges for their key parameter spectra are analyzed with desired tuning in mind; categorizing into n and k dominant regions for plausible electrooptic and electro absorptive applications, respectively. A semi analytic approach, with the aid of FEM simulations for the eigenmode calculations, was used for this work. Electrooptic tuning i.e. resonance shift properties inside Fabry Perot cavities are investigated with modal and scaling concerns in mind. Tuning changes the effective complex refractive index of the mode dictated by the Kramers Kronig relations which subsequently suggest a tradeoff between the resonance shift and increasing losses. The electrical tuning properties of the different modes in the cavity are analyzed, and subsequently a figure of merit, delta-lambda/delta-alpha was chosen with respect to carrier concentration and cavity scaling to find prospective suitable regions for desired tuning effects.
Electro-optic modulators are utilized ubiquitously ranging from applications in data communication to photonic neural networks. While tremendous progress has been made over the years, efficient phase-shifting modulators are challenged with fundamenta
The residual amplitude modulation ($mathrm{RAM}$) is the undesired, non-zero amplitude modulation that usually occurs when a phase modulation based on the electro-optic effect is imprinted on a laser beam. In this work, we show that electro-optic mod
High performance integrated electro-optic modulators operating at low temperature are critical for optical interconnects in cryogenic applications. Existing integrated modulators, however, suffer from reduced modulation efficiency or bandwidth at low
We propose a new type of bistable device for silicon photonics, using the self-electro-optic effect within an optical cavity. Since the bistability does not depend on the intrinsic optical nonlinearity of the material, but is instead engineered by me
The growth of 3D imaging across a range of sectors has driven a demand for high performance beam steering techniques. Fields as diverse as autonomous vehicles and medical imaging can benefit from a high speed, adaptable method of beam steering. We pr