ﻻ يوجد ملخص باللغة العربية
We give an explicit description of the full asymptotic expansion of the Schwartz kernel of the complex powers of $m$-Laplace type operators $L$ on compact Riemannian manifolds in terms of Riesz distributions. The constant term in this asymptotic expansion turns turns out to be given by the local zeta function of $L$. In particular, the constant term in the asymptotic expansion of the Greens function $L^{-1}$ is often called the mass of $L$, which (in case that $L$ is the Yamabe operator) is an important invariant, namely a positive multiple of the ADM mass of a certain asymptotically flat manifold constructed out of the given data. We show that for general conformally invariant $m$-Laplace operators $L$ (including the GJMS operators), this mass is a conformal invariant in the case that the dimension of $M$ is odd and that $ker L = 0$, and we give a precise description of the failure of the conformal invariance in the case that these conditions are not satisfied.
The paper introduces a new differential-geometric system which originates from the theory of $m$-Hessian operators. The core of this system is a new notion of invariant differentiation on multidimensional surfaces. This novelty gives rise to the foll
We show how to assign to any immersed torus in $R^3$ or $S^3$ a Riemann surface such that the immersion is described by functions defined on this surface. We call this surface the spectrum or the spectral curve of the torus. The spectrum contains imp
We consider conformal deformations within a class of incomplete Riemannian metrics which generalize conic orbifold singularities by allowing both warping and any compact manifold (not just quotients of the sphere) to be the link of the singular set.
Let $L_g$ be the subcritical GJMS operator on an even-dimensional compact manifold $(X, g)$ and consider the zeta-regularized trace $mathrm{Tr}_zeta(L_g^{-1})$ of its inverse. We show that if $ker L_g = 0$, then the supremum of this quantity, taken o
We study a fractional conformal curvature flow on the standard unit sphere and prove a perturbation result of the fractional Nirenberg problem with fractional exponent $sigma in (1/2,1)$. This extends the result of Chen-Xu (Invent. Math. 187, no. 2,