ﻻ يوجد ملخص باللغة العربية
Context: Transit or eclipse timing variations have proven to be a valuable tool in exoplanet research. However, no simple way to estimate the potential precision of such timing measures has been presented yet, nor are guidelines available regarding the relation between timing errors and sampling rate. Aims: A `timing error estimator (TEE) equation is presented that requires only basic transit parameters as input. With the TEE, it is straightforward to estimate timing precisions both for actual data as well as for future instruments, such as the TESS and PLATO space missions. Methods: A derivation of the timing error based on a trapezoidal transit shape is given. We also verify the TEE on realistically modeled transits using Monte Carlo simulations and determine its validity range, exploring in particular the interplay between ingress/egress times and sampling rates. Results: The simulations show that the TEE gives timing errors very close to the correct value, as long as the temporal sampling is faster than transit ingress/egress durations and transits with very low S/N are avoided. Conclusions: The TEE is a useful tool to estimate eclipse or transit timing errors in actual and future data-sets. In combination with an equation to estimate period errors (Deeg 2015), predictions for the ephemeris precision of long-coverage observations are possible as well. The tests for the TEEs validity-range led also to implications for instrumental design: Temporal sampling has to be faster than transit in- or egress durations, or a loss in timing-precision will occur. An application to the TESS mission shows that transits close to its detection limit will have timing uncertainties that exceed 1 hour within a few months after their acquisition. Prompt follow-up observations will be needed to avoid a `loosing of their ephemeris.
Transiting exoplanets provide access to data to study the mass-radius relation and internal structure of extrasolar planets. Long-period transiting planets allow insight into planetary environments similar to the Solar System where, in contrast to ho
We present 33 transit minimum times of 20 transiting planets discovered by the CoRoT mission, which have been obtained from ground-based observations since the missions end in 2012, with the objective to maintain the ephemeris of these planets. Twelv
Observations of the Earthshine off the Moon allow for the unique opportunity to measure the large-scale Earth atmosphere. Another opportunity is realized during a total lunar eclipse which, if seen from the Moon, is like a transit of the Earth in fro
When fitting N-body models to astronomical data - including transit times, radial velocity, and astrometric positions at observed times - the derivatives of the model outputs with respect to the initial conditions can help with model optimization and
Recently, we introduced PLanetary Atmospheric Tool for Observer Noobs (PLATON), a Python package that calculates model transmission spectra for exoplanets and retrieves atmospheric characteristics based on observed spectra. We now expand its capabili