ترغب بنشر مسار تعليمي؟ اضغط هنا

Gradient flow formulation and longtime behaviour of a constrained Fokker-Planck equation

118   0   0.0 ( 0 )
 نشر من قبل Simon Eberle
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a Fokker-Planck equation which is coupled to an externally given time-dependent constraint on its first moment. This constraint introduces a Lagrange-multiplier which renders the equation nonlocal and nonlinear. In this paper we exploit an interpretation of this equation as a Wasserstein gradient flow of a free energy ${mathcal{F}}$ on a time-constrained manifold. First, we prove existence of solutions by passing to the limit in an explicit Euler scheme obtained by minimizing $h {mathcal{F}}(varrho)+W_2^2(varrho^0,varrho)$ among all $varrho$ satisfying the constraint for some $varrho^0$ and time-step $h>0$. Second, we provide quantitative estimates for the rate of convergence to equilibrium when the constraint converges to a constant. The proof is based on the investigation of a suitable relative entropy with respect to minimizers of the free energy chosen according to the constraint. The rate of convergence can be explicitly expressed in terms of constants in suitable logarithmic Sobolev inequalities.



قيم البحث

اقرأ أيضاً

371 - Arnaud Guillin 2019
We study the long time behaviour of the kinetic Fokker-Planck equation with mean field interaction, whose limit is often called Vlasov-Fkker-Planck equation. We prove a uniform (in the number of particles) exponential convergence to equilibrium for t he solutions in the weighted Sobolev space H 1 ($mu$) with a rate of convergence which is explicitly computable and independent of the number of particles. The originality of the proof relies on functional inequalities and hypocoercivity with Lyapunov type conditions, usually not suitable to provide adimensional results.
We investigate the Cauchy problem and the diffusion asymptotics for a spatially inhomogeneous kinetic model associated to a nonlinear Fokker-Planck operator. Its solution describes the density evolution of interacting particles whose mobility is hamp ered by their aggregation. When the initial data lies below a Maxwellian, we derive the global well-posedness with instantaneous smoothness. The proof relies on hypoelliptic analogue of the classical parabolic theory, as well as a positivity-spreading result based on the Harnack inequality and barrier function methods. Moreover, the scaled equation leads to the fast diffusion flow under the low field limit. The relative phi-entropy method enables us to see the connection between the overdamped dynamics of the nonlinearly coupled kinetic model and the correlated fast diffusion. The global in time quantitative diffusion asymptotics is then derived by combining entropic hypocoercivity, relative phi-entropy and barrier function methods.
72 - Ludovic Cesbron 2016
We derive a diffusion approximation for the kinetic Vlasov-Fokker-Planck equation in bounded spatial domains with specular reflection type boundary conditions. The method of proof involves the construction of a particular class of test functions to b e chosen in the weak formulation of the kinetic model. This involves the analysis of the underlying Hamiltonian dynamics of the kinetic equation coupled with the reflection laws at the boundary. This approach only demands the solution family to be weakly compact in some weighted Hilbert space rather than the much tricky $mathrm L^1$ setting.
In this paper, we develop an operator splitting scheme for the fractional kinetic Fokker-Planck equation (FKFPE). The scheme consists of two phases: a fractional diffusion phase and a kinetic transport phase. The first phase is solved exactly using t he convolution operator while the second one is solved approximately using a variational scheme that minimizes an energy functional with respect to a certain Kantorovich optimal transport cost functional. We prove the convergence of the scheme to a weak solution to FKFPE. As a by-product of our analysis, we also establish a variational formulation for a kinetic transport equation that is relevant in the second phase. Finally, we discuss some extensions of our analysis to more complex systems.
168 - S. I. Denisov 2009
We study the connection between the parameters of the fractional Fokker-Planck equation, which is associated with the overdamped Langevin equation driven by noise with heavy-tailed increments, and the transition probability density of the noise gener ating process. Explicit expressions for these parameters are derived both for finite and infinite variance of the rescaled transition probability density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا