ﻻ يوجد ملخص باللغة العربية
We provide an holistic view of galaxy evolution at high redshift z>4, that incorporates the constraints from various astrophysical/cosmological probes, including the estimate of the cosmic SFR density from UV/IR surveys and long GRB rates, the cosmic reionization history after the latest Planck measurements, and the missing satellites issue. We achieve this goal in a model-independent way by exploiting the SFR functions derived by Mancuso et al. (2016) on the basis of an educated extrapolation of the latest UV/far-IR data from HST/Herschel, and already tested against a number of independent observables. Our SFR functions integrated down to an UV magnitude limit M_UV<-13 (or SFR limit around 10^-2 M_sun/yr) produces a cosmic SFR density in excellent agreement with recent determinations from IR surveys and, taking into account a metallicity ceiling Z<Z_sun/2, with the estimates from long GRB rates. They also yield a cosmic reionization history consistent with that implied by the recent measurements of the Planck mission on the electron scattering optical depth tau_es~0.058; remarkably, this result is obtained under a conceivable assumption regarding the average value f_esc~0.1 of the escape fraction for ionizing photons. We demonstrate via the abundance matching technique that the above constraints concurrently imply galaxy formation to become inefficient within dark matter halos of mass below a few 10^8 M_sun; pleasingly, such a limit is also required not to run into the missing satellite issue. Finally, we predict a downturn of the galaxy luminosity function faintward of M_UV<-12, and stress that its detailed shape, as plausibly probed in the next future by the JWST, will be extremely informative on the astrophysics of galaxy formation in small halos, or even on the microscopic nature of the dark matter.
We directly compare predictions of dwarf galaxy properties in a semi-analytic model (SAM) with those extracted from a high-resolution hydrodynamic simulation. We focus on galaxies with halo masses of 1e9<Mvir/Msol<1e11 at high redshift ($zge5$). We f
ALMA observations of the long wavelength dust continuum are used to estimate the interstellar medium (ISM) masses in a sample of 708 galaxies at z = 0.3 to 4.5 in the COSMOS field. The galaxy sample has known far-infrared luminosities and, hence, sta
We present here a three-dimesional hydrodynamical simulation for star formation. Our aim is to explore the effect of the metal-line cooling on the thermodynamics of the star-formation process. We explore the effect of changing the metallicty of the g
I review the observational characteristics of intermediate-to-high redshift star forming galaxies, including their star formation rates, dust extinctions, ISM kinematics, and chemical compositions. I present evidence that the mean rate of metal enric
Measuring the star formation rate (SFR) at high redshift is crucial for understanding cosmic reionization and galaxy formation. Two common complementary approaches are Lyman-Break-Galaxy (LBG) surveys for large samples and Gamma-Ray-Burst (GRB) obser