ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant Metrewave Radio Telescope detection of associated HI 21cm absorption at $z = 1.2230$ towards TXS1954+513

78   0   0.0 ( 0 )
 نشر من قبل Nissim Kanekar
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have used the 610 MHz receivers of the Giant Metrewave Radio Telescope (GMRT) to detect associated HI 21cm absorption from the $z = 1.2230$ blazar TXS1954+513. The GMRT HI 21cm absorption is likely to arise against either the milli-arcsecond-scale core or the one-sided milli-arcsecond-scale radio jet, and is blueshifted by $approx 328$ km s$^{-1}$ from the blazar redshift. This is consistent with a scenario in which the HI cloud giving rise to the absorption is being driven outward by the radio jet. The integrated HI 21cm optical depth is $(0.716 pm 0.037)$ km s$^{-1}$, implying a high HI column density, $N_{rm HI} = (1.305 pm 0.067) times ({rm T_s/100: K}) times 10^{20}$ cm$^{-2}$, for an assumed HI spin temperature of 100 K. We use Nickel Telescope photometry of TXS1954+513 to infer a high rest-frame 1216 AA luminosity of $(4.1 pm 1.2) times 10^{23}$ W Hz$^{-1}$. The $z = 1.2230$ absorber towards TXS1954+513 is only the fifth case of a detection of associated HI 21cm absorption at $z > 1$, and is also the first case of such a detection towards an active galactic nucleus (AGN) with a rest-frame ultraviolet luminosity $gg 10^{23}$ W Hz$^{-1}$, demonstrating that neutral hydrogen can survive in AGN environments in the presence of high ultraviolet luminosities.



قيم البحث

اقرأ أيضاً

We report results from a Giant Metrewave Radio Telescope search for associated redshifted HI 21cm absorption from 24 active galactic nuclei (AGNs), at $1.1 < z < 3.6$, selected from the Caltech-Jodrell Bank Flat-spectrum (CJF) sample. 22 out of 23 so urces with usable data showed no evidence of absorption, with typical $3sigma$ optical depth detection limits of $approx 0.01$ at a velocity resolution of $approx 30$~km~s$^{-1}$. A single tentative absorption detection was obtained at $z approx 3.530$ towards TXS0604+728. If confirmed, this would be the highest redshift at which HI 21cm absorption has ever been detected. Including 29 CJF sources with searches for redshifted HI 21cm absorption in the literature, mostly at $z < 1$, we construct a sample of 52 uniformly-selected flat-spectrum sources. A Peto-Prentice two-sample test for censored data finds (at $approx 3sigma$ significance) that the strength of HI 21cm absorption is weaker in the high-$z$ sample than in the low-$z$ sample, this is the first statistically significant evidence for redshift evolution in the strength of HI 21cm absorption in a uniformly selected AGN sample. However, the two-sample test also finds that the HI 21cm absorption strength is higher in AGNs with low ultraviolet or radio luminosities, at $approx 3.4 sigma$ significance. The fact that the higher-luminosity AGNs of the sample typically lie at high redshifts implies that it is currently not possible to break the degeneracy between AGN luminosity and redshift evolution as the primary cause of the low HI 21cm opacities in high-redshift, high-luminosity active galactic nuclei.
We present results from a study of seven large known head-tail radio galaxies based on observations using the Giant Metrewave Radio Telescope at 240 and 610 MHz. These observations are used to study the radio morphologies and distribution of the spec tral indices across the sources. The overall morphology of the radio tails of these sources is suggestive of random motions of the optical host around the cluster potential. The presence of the multiple bends an d wiggles in several head-tail sources is possibly due to the precessing radio jets. We find steepening of the spectral index along the radio tails. The prevailing equipartition magnetic field also decreases a long the radio tails of these sources. These steepening trends are attributed to the synchrotron aging of plasma toward the ends of the tails. The dynamical ages of these sample sources have been estimated to be ~100 Myr, which is a factor of six more than the age estimates from the radiative losses due to synchrotron cooling.
We report a Giant Metrewave Radio Telescope (GMRT) survey for associated HI 21-cm absorption from 50 active galactic nuclei (AGNs), at $z approx 0.04 - 3.01$, selected from the Caltech-Jodrell Bank Flat-spectrum (CJF) sample. Clean spectra were obtai ned towards 40 sources, yielding two new absorption detections, at $z = 0.229$ towards TXS 0003+380 and $z = 0.333$ towards TXS 1456+375, besides confirming an earlier detection, at $z = 1.277$ towards TXS 1543+480. There are 92 CJF sources, at $0.01 lesssim z lesssim 3.6$, with searches for associated HI 21-cm absorption, by far the largest uniformly-selected AGN sample with searches for such absorption. We find weak ($approx 2sigma$) evidence for a lower detection rate of HI 21-cm absorption at high redshifts, with detection rates of $28^{+10}_{-8}$% and $7^{+6}_{-4}$% in the low-$z$ ($z < z_{rm med}$) and high-$z$ ($z > z_{rm med}$) sub-samples, respectively. We use two-sample tests to find that the strength of the HI 21-cm absorption in the AGNs of our sample depends on both redshift and AGN luminosity, with a lower detection rate and weaker absorption at high redshifts and high ultraviolet/radio AGN luminosities. Unfortunately, the luminosity bias in our sample, with high-luminosity AGNs arising at high redshifts, implies that it is not currently possible to identify whether redshift evolution or AGN luminosity is the primary cause of the weaker absorption in high-$z$, high-luminosity AGNs. We find that the strength of HI 21-cm absorption does not depend on AGN colour, suggesting that dust extinction is not the main cause of reddening in the CJF sample.
We report the first detections of associated H{sc i} 21,cm absorption in Gigahertz-peaked-spectrum (GPS) sources at high redshifts, $z > 1$, using the Giant Metrewave Radio Telescope (GMRT). Our GMRT search for associated H{sc i} 21,cm absorption in a sample of 12 GPS sources yielded two new detections of absorption, towards TXS~1200+045 at $z = 1.226$ and TXS~1245$-$197 at $z = 1.275$, and five non-detections. These are only the sixth and seventh detections of associated H{sc i} 21,cm absorption in active galactic nuclei (AGNs) at $z > 1$. Both H{sc i} 21,cm absorption profiles are wide, with velocity spans between nulls of $approx 600$~km~s$^{-1}$ (TXS~1200+045) and $approx 1100$~km~s$^{-1}$ (TXS~1245$-$197). In both absorbers, the large velocity spread of the absorption and its blueshift from the AGN, suggests that it arises in outflowing neutral gas, perhaps driven by the radio jets to high velocities. We derive mass outflow rates of ${dot M} approx 32 ; {rm M}_odot$~yr$^{-1}$ (TXS~1200+045) and ${dot M} approx 18 ; {rm M}_odot$~yr$^{-1}$ (TXS~1245$-$197), comparable to the mass outflow rates seen earlier in low-redshift active galactic nuclei.
64 - N. Kanekar 2007
We report the GMRT detection of HI 21cm absorption from the $z sim 3.39$ damped Lyman-$alpha$ absorber (DLA) towards PKS 0201+113, the highest redshift at which 21cm absorption has been detected in a DLA. The absorption is spread over $sim 115$ km s$ ^{-1}$ and has two components, at $z = 3.387144 (17)$ and $z = 3.386141 (45)$. The stronger component has a redshift and velocity width in agreement with the tentative detection of Briggs et al. (1997), but a significantly lower optical depth. The core size and DLA covering factor are estimated to be $lesssim 100$ pc and $f sim 0.69$, respectively, from a VLBA 328 MHz image. If one makes the conventional assumption that the HI column densities towards the optical and radio cores are the same, this optical depth corresponds to a spin temperature of $ts sim [(955 pm 160) times (f/0.69)] $ K. However, this assumption may not be correct, given that no metal-line absorption is seen at the redshift of the stronger 21cm component, indicating that this component does not arise along the line of sight to the optical QSO, and that there is structure in the 21cm absorbing gas on scales smaller than the size of the radio core. We model the 21cm absorbing gas as having a two-phase structure with cold dense gas randomly distributed within a diffuse envelope of warm gas. For such a model, our radio data indicate that, even if the optical QSO lies along a line-of-sight with a fortuitously high ($sim 50$%) cold gas fraction, the average cold gas fraction is low, ($lesssim 17%$), when averaged over the the spatial extent of the radio core. Finally, the large mismatch between peak 21cm and optical redshifts and the complexity of both profiles makes it unlikely that the $z sim 3.39$ DLA will be useful in tests of fundamental constant evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا