ﻻ يوجد ملخص باللغة العربية
In this paper, we present a detailed study of the problem of classical stability of U(1) gauged Q-balls. In particular, we show that the standard methods that are suitable for establishing the classical stability criterion for ordinary (nongauged) one-field and two-field Q-balls are not effective in the case of U(1) gauged Q-balls, although all the technical steps of calculations can be performed in the same way as those for ordinary Q-balls. We also present the results of numerical simulations in models with different scalar field potentials, explicitly demonstrating that, in general, the regions of stability of U(1) gauged Q-balls are not defined in the same way as in the case of ordinary Q-balls. Consequently, the classical stability criterion for ordinary Q-balls cannot be applied to U(1) gauged Q-balls in the general case.
Scalar field theories with particular U(1)-symmetric potentials contain non-topological soliton solutions called Q-balls. Promoting the U(1) to a gauge symmetry leads to the more complicated situation of gauged Q-balls. The soliton solutions to the r
We discuss the $U(1)$ gauged Q-balls with $N$-power potential to examine their properties analytically. More numerical descriptions and some analytical consideration have been contributed to the models governed by four-power potential. We also demons
Radially excited $U(1)$ gauged $Q$-balls are studied using both analytical and numerical methods. Unlike the nongauged case, there exists only a finite number of radially excited gauged $Q$-balls at given values of the models parameters. Similarly to
We propose a practical method for analyzing stability of Q-balls for the whole parameter space, which includes the intermediate region between the thin-wall limit and thick-wall limit as well as Q-bubbles (Q-balls in false vacuum), using the catastro
In this paper, we continue discussing Q-balls in the Wick--Cutkosky model. Despite Q-balls in this model are composed of two scalar fields, they turn out to be very useful and illustrative for examining various important properties of Q-balls. In par