ترغب بنشر مسار تعليمي؟ اضغط هنا

Problem with classical stability of U(1) gauged Q-balls

62   0   0.0 ( 0 )
 نشر من قبل Mikhail Smolyakov
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present a detailed study of the problem of classical stability of U(1) gauged Q-balls. In particular, we show that the standard methods that are suitable for establishing the classical stability criterion for ordinary (nongauged) one-field and two-field Q-balls are not effective in the case of U(1) gauged Q-balls, although all the technical steps of calculations can be performed in the same way as those for ordinary Q-balls. We also present the results of numerical simulations in models with different scalar field potentials, explicitly demonstrating that, in general, the regions of stability of U(1) gauged Q-balls are not defined in the same way as in the case of ordinary Q-balls. Consequently, the classical stability criterion for ordinary Q-balls cannot be applied to U(1) gauged Q-balls in the general case.



قيم البحث

اقرأ أيضاً

Scalar field theories with particular U(1)-symmetric potentials contain non-topological soliton solutions called Q-balls. Promoting the U(1) to a gauge symmetry leads to the more complicated situation of gauged Q-balls. The soliton solutions to the r esulting set of nonlinear differential equations have markedly different properties, such as a maximal possible size and charge. Despite these differences, we discover a relation that allows one to extract the properties of gauged Q-balls (such as the radius, charge, and energy) from the more easily obtained properties of global Q-balls. These results provide a new guide to understanding gauged Q-balls as well as providing simple and accurate analytical characterization of the Q-ball properties.
We discuss the $U(1)$ gauged Q-balls with $N$-power potential to examine their properties analytically. More numerical descriptions and some analytical consideration have been contributed to the models governed by four-power potential. We also demons trate strictly some new limitations that the stable $U(1)$ gauged Q-balls should accept instead of estimating those with only some specific values of model variables numerically. Having derived the explicit expressions of radius, the Noether charge and energy of the gauged Q-balls, we find that these models under the potential of matter field with general power and the boundary conditions will exist instead of dispersing and decaying. The Noether charge of the large gauged Q-balls must be limited. The mass parameter of the model can not be tiny.
Radially excited $U(1)$ gauged $Q$-balls are studied using both analytical and numerical methods. Unlike the nongauged case, there exists only a finite number of radially excited gauged $Q$-balls at given values of the models parameters. Similarly to the unexcited gauged $Q$-ball, the radially excited one cannot possess the Noether charge exceeding some limiting value. This limiting Noether charge decreases with an increase in the radial excitation of the gauged $Q$-ball. For $n$-th radial excitation, there is a maximum allowable value of the gauge coupling constant, and the existence of the $n$-th radially excited gauged $Q$-ball becomes impossible if the gauge coupling constant exceeds this limiting value. Similarly to the limiting Noether charge, the limiting gauge coupling constant decreases with an increase in the radial excitation. At a fixed Noether charge, the energy of the gauged $Q$-ball increases with an increase in the radial excitation, and thus the radially excited gauged $Q$-ball is unstable against transit into a less excited or unexcited one.
297 - Nobuyuki Sakai 2008
We propose a practical method for analyzing stability of Q-balls for the whole parameter space, which includes the intermediate region between the thin-wall limit and thick-wall limit as well as Q-bubbles (Q-balls in false vacuum), using the catastro phe theory. We apply our method to the two concrete models, $V_3=m^2phi^2/2-muphi^3+lambdaphi^4$ and $V_4=m^2phi^2/2-lambdaphi^4+phi^6/M^2$. We find that $V_3$ and $V_4$ Models fall into {it fold catastrophe} and {it cusp catastrophe}, respectively, and their stability structures are quite different from each other.
In this paper, we continue discussing Q-balls in the Wick--Cutkosky model. Despite Q-balls in this model are composed of two scalar fields, they turn out to be very useful and illustrative for examining various important properties of Q-balls. In par ticular, in the present paper we study in detail (analytically and numerically) the problem of classical stability of Q-balls, including the nonlinear evolution of classically unstable Q-balls, as well as the behaviour of Q-balls in external fields in the non-relativistic limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا