ﻻ يوجد ملخص باللغة العربية
The use of the Moon as a detector volume for ultra-high-energy neutrinos and cosmic rays, by searching for the Askaryan radio pulse produced when they interact in the lunar regolith, has been attempted by a range of projects over the past two decades. In this contribution, I discuss some of the technical considerations relevant to these experiments, and their consequent sensitivity to ultra-high-energy particles. I also discuss some possible future experiments, and highlight their potential.
Various experiments have been conducted to search for the radio emission from ultra-high-energy particles interacting in the lunar regolith. Although they have not yielded any detections, they have been successful in establishing upper limits on the
Lunar Cherenkov experiments aim to detect nanosecond pulses of Cherenkov emission produced during UHE cosmic ray or neutrino interactions in the lunar regolith. Pulses from these interactions are dispersed, and therefore reduced in amplitude, during
The lunar technique is a method for maximising the collection area for ultra-high-energy (UHE) cosmic ray and neutrino searches. The method uses either ground-based radio telescopes or lunar orbiters to search for Askaryan emission from particles cas
The VERITAS VHE gamma-ray observatory recently completed a major upgrade of its camera and pattern triggering systems. Bias curve testing of the upgraded VERITAS Observatory under dark sky conditions indicates a 50% increase in photon detection effic
The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the