ﻻ يوجد ملخص باللغة العربية
Quantum repeaters provide an efficient solution to distribute Bell pairs over arbitrarily long distances. While scalable architectures are demanding regarding the number of qubits that need to be controlled, here we present a quantum repeater scheme aiming to extend the range of present day quantum communications that could be implemented in the near future with trapped ions in cavities. We focus on an architecture where ion-photon entangled states are created locally and subsequently processed with linear optics to create elementary links of ion-ion entangled states. These links are then used to distribute entangled pairs over long distances using successive entanglement swapping operations performed deterministically using ion-ion gates. We show how this architecture can be implemented while encoding the qubits in a decoherence free subspace to protect them against collective dephasing. This results in a protocol that can be used to violate a Bell inequality over distances of about 800 km assuming state of the art parameters. We discuss how this could be improved to several thousand kilometers in future setups.
We examine the viability of quantum repeaters based on two-species trapped ion modules for long distance quantum key distribution. Repeater nodes comprised of ion-trap modules of co-trapped ions of distinct species are considered. The species used fo
We propose a scheme to implement quantum computation in decoherence-free subspace with superconducting devices inside a cavity by unconventional geometric manipulation. Universal single-qubit gates in encoded qubit can be achieved with cavity assiste
We show that trapped ions can be used to simulate a highly symmetrical Hamiltonian with eingenstates naturally protected against local sources of decoherence. This Hamiltonian involves long range coupling between particles and provides a more efficie
Trapped ions form an advanced technology platform for quantum information processing with long qubit coherence times, high-fidelity quantum logic gates, optically active qubits, and a potential to scale up in size while preserving a high level of con
Measurement-based quantum computation (MBQC) represents a powerful and flexible framework for quantum information processing, based on the notion of entangled quantum states as computational resources. The most prominent application is the one-way qu