ﻻ يوجد ملخص باللغة العربية
The experimental realization of 2D Bose gases with a tunable interaction strength is an important challenge for the study of ultracold quantum matter. Here we report on the realization of an optical accordion creating a lattice potential with a spacing that can be dynamically tuned between 11$,mu$m and 2$,mu$m. We show that we can load ultracold $^{87}$Rb atoms into a single node of this optical lattice in the large spacing configuration and then decrease nearly adiabatically the spacing to reach a strong harmonic confinement with frequencies larger than $omega_z/2pi=10,$kHz. Atoms are trapped in an additional flat-bottom in-plane potential that is shaped with a high resolution. By combining these tools we create custom-shaped uniform 2D Bose gases with tunable confinement along the transverse direction and hence with a tunable interaction strength.
Two-dimensional (2D) systems play a special role in many-body physics. Because of thermal fluctuations, they cannot undergo a conventional phase transition associated to the breaking of a continuous symmetry. Nevertheless they may exhibit a phase tra
We study experimentally and numerically the equilibrium density profiles of a trapped two-dimensional $^{87}$Rb Bose gas, and investigate the equation of state of the homogeneous system using the local density approximation. We find a clear discrepan
We analyze the two-body momentum correlation function for a uniform weakly interacting one-dimensional Bose gas. We show that the strong positive correlation between opposite momenta, expected in a Bose-Einstein condensate with a true long-range orde
Two-component coupled Bose gas in a 1D optical lattice is examined. In addition to the postulated Mott insulator and Superfluid phases, multiple bosonic components manifest spin degrees of freedom. Coupling of the components in the Bose gas within sa
We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system