ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of Sagittarius A* during the pericenter passage of the G2 object with MAGIC

53   0   0.0 ( 0 )
 نشر من قبل Ievgen Vovk Ie
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. We present the results of a multi-year monitoring campaign of the Galactic Center (GC) with the MAGIC telescopes. These observations were primarily motivated by reports that a putative gas cloud (G2) would be passing in close proximity to the super-massive black hole (SMBH), associated with Sagittarius A*, located at the center of our galaxy. This event was expected to give astronomers a unique chance to study the effect of in-falling matter on the broad-band emission of a SMBH. Aims. We search for potential flaring emission of very-high-energy (VHE; $geq$100 GeV) gamma rays from the direction of the SMBH at the GC due to the passage of the G2 object. Using these data we also study the morphology of this complex region. Methods. We observed the GC region with the MAGIC Imaging Atmospheric Cherenkov Telescopes during the period 2012-2015, collecting 67 hours of good-quality data. In addition to a search for variability in the flux and spectral shape of the GC gamma-ray source, we use a point-source subtraction technique to remove the known gamma-ray emitters located around the GC in order to reveal the TeV morphology of the extended emission inside that region. Results. No effect of the G2 object on the VHE gamma-ray emission from the GC was detected during the 4 year observation campaign. We confirm previous measurements of the VHE spectrum of Sagittarius A*, and do not detect any significant variability of the emission from the source. Furthermore, the known VHE gamma-ray emitter at the location of the supernova remnant G0.9+0.1 was detected, as well as the recently discovered VHE source close to the GG radio Arc.



قيم البحث

اقرأ أيضاً

98 - J.-H. Park 2015
The gas cloud G2 falling toward Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, is supposed to provide valuable information on the physics of accretion flows and the environment of the black hole. We observed Sgr A* with four European stations of the Global Millimeter Very Long Baseline Interferometry Array (GMVA) at 86 GHz on 1 October 2013 when parts of G2 had already passed the pericenter. We searched for possible transient asymmetric structure -- such as jets or winds from hot accretion flows -- around Sgr A* caused by accretion of material from G2. The interferometric closure phases remained zero within errors during the observation time. We thus conclude that Sgr A* did not show significant asymmetric (in the observer frame) outflows in late 2013. Using simulations, we constrain the size of the outflows that we could have missed to ~2.5 mas along the major axis, ~0.4 mas along the minor axis of the beam, corresponding to approximately 232 and 35 Schwarzschild radii, respectively; we thus probe spatial scales on which the jets of radio galaxies are suspected to convert magnetic into kinetic energy. As probably less than 0.2 Jy of the flux from Sgr A* can be attributed to accretion from G2, one finds an effective accretion rate eta*Mdot < 1.5*10^9 kg/s ~ 7.7*10^-9 Mearth/yr for material from G2. Exploiting the kinetic jet power--accretion power relation of radio galaxies, one finds that the rate of accretion of matter that ends up in jets is limited to Mdot < 10^17 kg/s ~ 0.5 Mearth/yr, less than about 20% of the mass of G2. Accordingly, G2 appears to be largely stable against loss of angular momentum and subsequent (partial) accretion at least on time scales < 1 year.
We have further followed the evolution of the orbital and physical properties of G2, the object currently falling toward the massive black hole in the Galactic Center on a near-radial orbit. New, very sensitive data were taken in April 2013 with NACO and SINFONI at the ESO VLT . The head of G2 continues to be stretched ever further along the orbit in position-velocity space. A fraction of its emission appears to be already emerging on the blue-shifted side of the orbit, past pericenter approach. Ionized gas in the head is now stretched over more than 15,000 Schwarzschild radii RS around the pericenter of the orbit, at ~ 2000 RS ~ 20 light hours from the black hole. The pericenter passage of G2 will be a process stretching over a period of at least one year. The Brackett-{gamma} luminosity of the head has been constant over the past 9 years, to within +- 25%, as have the line ratios Brackett-{gamma} / Paschen-{alpha} and Brackett-{gamma} / Helium-I. We do not see any significant evidence for deviations of G2s dynamical evolution, due to hydrodynamical interactions with the hot gas around the black hole, from a ballistic orbit of an initially compact cloud with moderate velocity dispersion. The constant luminosity and the increasingly stretched appearance of the head of G2 in the position-velocity plane, without a central peak, is not consistent with several proposed models with continuous gas release from an initially bound zone around a faint star on the same orbit as G2.
In early 2014 the fast-moving near-infrared source G2 reached its closest approach to the supermassive black hole Sgr A* in the Galactic Center. We report on the evolution of the ionized gaseous component and the dusty component of G2 immediately aft er this event, revealed by new observations obtained in 2015 and 2016 with the SINFONI integral field spectrograph and the NACO imager at the ESO VLT. The spatially resolved dynamics of the Br$gamma$ line emission can be accounted for by the ballistic motion and tidal shearing of a test-particle cloud that has followed a highly eccentric Keplerian orbit around the black hole for the last 12 years. The non-detection of a drag force or any strong hydrodynamic interaction with the hot gas in the inner accretion zone limits the ambient density to less than a few 10$^3$ cm$^{-3}$ at the distance of closest approach (1500 $R_s$), assuming G2 is a spherical cloud moving through a stationary and homogeneous atmosphere. The dust continuum emission is unresolved in L-band, but stays consistent with the location of the Br$gamma$ emission. The total luminosity of the Br$gamma$ and L emission has remained constant to within the measurement uncertainty. The nature and origin of G2 are likely related to that of the precursor source G1, since their orbital evolution is similar, though not identical. Both object are also likely related to a trailing tail structure, which is continuously connected to G2 over a large range in position and radial velocity.
We report new observations of the Galactic Center source G2 from the W. M. Keck Observatory. G2 is a dusty red object associated with gas that shows tidal interactions as it nears closest approach with the Galaxys central black hole. Our observations , conducted as G2 passed through periapse, were designed to test the proposal that G2 is a 3 earth mass gas cloud. Such a cloud should be tidally disrupted during periapse passage. The data were obtained using the Keck II laser guide star adaptive optics system (LGSAO) and the facility near-infrared camera (NIRC2) through the K [2.1 $mu$m] and L [3.8 $mu$m] broadband filters. Several results emerge from these observations: 1) G2 has survived its closest approach to the black hole as a compact, unresolved source at L; 2) G2s L brightness measurements are consistent with those over the last decade; 3) G2s motion continues to be consistent with a Keplerian model. These results rule out G2 as a pure gas cloud and imply that G2 has a central star. This star has a luminosity of $sim$30 $L_{odot} $ and is surrounded by a large ($sim$2.6 AU) optically thick dust shell. The differences between the L and Br-$gamma$ observations can be understood with a model in which L and Br-$gamma$ emission arises primarily from internal and external heating, respectively. We suggest that G2 is a binary star merger product and will ultimately appear similar to the B-stars that are tightly clustered around the black hole (the so-called S-star cluster).
The microquasar V404 Cygni underwent a series of outbursts in 2015, June 15-31, during which its flux in hard X-rays (20-40 keV) reached about 40 times the Crab Nebula flux. Because of the exceptional interest of the flaring activity from this source , observations at several wavelengths were conducted. The MAGIC telescopes, triggered by the INTEGRAL alerts, followed-up the flaring source for several nights during the period June 18-27, for more than 10 hours. One hour of observation was conducted simultaneously to a giant 22 GHz radio flare and a hint of signal at GeV energies seen by Fermi-LAT. The MAGIC observations did not show significant emission in any of the analysed time intervals. The derived flux upper limit, in the energy range 200--1250 GeV, is 4.8$times 10^{-12}$ ph cm$^{-2}$ s$^{-1}$. We estimate the gamma-ray opacity during the flaring period, which along with our non-detection, points to an inefficient acceleration in the V404,Cyg jets if VHE emitter is located further than $1times 10^{10}$ cm from the compact object.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا