ترغب بنشر مسار تعليمي؟ اضغط هنا

The VIMOS Public Extragalactic Redshift Survey (VIPERS): Downsizing of the blue cloud and the influence of galaxy size on mass quenching over the last eight billion years

127   0   0.0 ( 0 )
 نشر من قبل Chris Haines
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the full VIPERS redshift survey in combination with SDSS-DR7 to explore the relationships between star-formation history (using d4000), stellar mass and galaxy structure, and how these relationships have evolved since z~1. We trace the extents and evolutions of both the blue cloud and red sequence, by fitting double Gaussians to the d4000 distribution of galaxies in narrow stellar mass bins, for four redshift intervals over 0<z<1. This reveals downsizing in star formation, as the high-mass limit of the blue cloud retreats steadily with time from M*~10^11.2 M_sun at z~0.9 to M*~10^10.7 M_sun by the present day. The number density of massive blue-cloud galaxies (M*>10^11 M_sun, d4000<1.55) drops sharply by a factor five between z~0.8 and z~0.5. These galaxies are becoming quiescent at a rate that largely matches the increase in the numbers of massive passive galaxies seen over this period. We examine the size-mass relation of blue cloud galaxies, finding that its high-mass boundary runs along lines of constant M*/r_e or equivalently inferred velocity dispersion. Larger galaxies can continue to form stars to higher stellar masses than smaller galaxies. As blue cloud galaxies approach this high-mass limit, they start to be quenched, their d4000 values increasing to push them towards the green valley. In parallel, their structures change, showing higher Sersic indices and central stellar mass densities. For these galaxies, bulge growth is necessary for them to reach the high-mass limit of the blue cloud and be quenched by internal mechanisms. The blue cloud galaxies that are being quenched at z~0.8 lie along the same size-mass relation as present day quiescent galaxies, and seem the likely progenitors of todays S0s.



قيم البحث

اقرأ أيضاً

[Abridged] We use the final data of the VIMOS Public Extragalactic Redshift Survey (VIPERS) to investigate the effect of environment on the evolution of galaxies between $z=0.5$ and $z=0.9$. We characterise local environment in terms of the density c ontrast smoothed over a cylindrical kernel, the scale of which is defined by the distance to the $5^{th}$ nearest neighbour. We find that more massive galaxies tend to reside in higher-density environments over the full redshift range explored. Defining star-forming and passive galaxies through their (NUV$-r$) vs ($r-K$) colours, we then quantify the fraction of star-forming over passive galaxies, $f_{rm ap}$, as a function of environment at fixed stellar mass. $f_{rm ap}$ is higher in low-density regions for galaxies with masses ranging from $log(mathcal{M}/mathcal{M}_odot)=10.38$ (the lowest value explored) to at least $log(mathcal{M}/mathcal{M}_odot)sim11.3$, although with decreasing significance going from lower to higher masses. This is the first time that environmental effects on high-mass galaxies are clearly detected at redshifts as high as $zsim0.9$. We compared these results to VIPERS-like galaxy mock catalogues based on the galaxy formation model of De Lucia & Blaizot. The model correctly reproduces $f_{rm ap}$ in low-density environments, but underpredicts it at high densities. The discrepancy is particularly strong for the lowest-mass bins. We find that this discrepancy is driven by an excess of low-mass passive satellite galaxies in the model. Looking at the accretion history of these model galaxies, i.e. the times when they become satellites, a better (yet not perfect) agreement with observations can be obtained in high density regions by assuming either that a not-negligible fraction of satellites is destroyed, or that their quenching time-scale is longer than $sim 2$ Gyr.
Aims. Using the VIMOS Public Extragalactic Redshift Survey (VIPERS) we aim to jointly estimate the key parameters that describe the galaxy density field and its spatial correlations in redshift space. Methods. We use the Bayesian formalism to jointly reconstruct the redshift-space galaxy density field, power spectrum, galaxy bias and galaxy luminosity function given the observations and survey selection function. The high-dimensional posterior distribution is explored using the Wiener filter within a Gibbs sampler. We validate the analysis using simulated catalogues and apply it to VIPERS data taking into consideration the inhomogeneous selection function. Results. We present joint constraints on the anisotropic power spectrum as well as the bias and number density of red and blue galaxy classes in luminosity and redshift bins as well as the measurement covariances of these quantities. We find that the inferred galaxy bias and number density parameters are strongly correlated although these are only weakly correlated with the galaxy power spectrum. The power spectrum and redshift-space distortion parameters are in agreement with previous VIPERS results with the value of the growth rate $fsigma_8 = 0.38$ with 18% uncertainty at redshift 0.7.
We explore the evolution of the statistical distribution of galaxy morphological properties and colours over the redshift range $0.5<z<1$, combining high-quality imaging data from the CFHT Legacy Survey with the large number of redshifts and extended photometry from the VIPERS survey. Galaxy structural parameters are measured by fitting Sersic profiles to $i$-band images and then combined with absolute magnitudes, colours and redshifts, to trace the evolution in a multi-parameter space. We analyse, using a new method, the combination of colours and structural parameters of early- and late-type galaxies in luminosity--redshift space. We found that both the rest-frame colour distributions in the (U-B) vs. (B-V) plane and the Sersic index distributions are well fitted by a sum of two Gaussians, with a remarkable consistency of red-spheroidal and blue-disky galaxy populations, over the explored redshift ($0.5<z<1$) and luminosity ($-1.5<B-B_*<1.0$) ranges. The combination of the UBV rest-frame colour and Sersic index $n$ as a function of redshift and luminosity allows us to present the structure of early- and late-type galaxies and their evolution. We found that early type galaxies display only a slow change of their concentrations since $zsim1$; it is already established by $zsim1$ and depends much more strongly on their luminosities. In contrast, late-type galaxies get clearly more concentrated with cosmic time since $zsim1$, with only little evolution in colour, which remains dependent mainly on their luminosity. This flipped luminosity (mass) and redshift dependence likely reflects different evolutionary tracks of early- and late-type galaxies before and after $zsim1$. The combination of rest-frame colours and Sersic index $n$ as a function of redshift and luminosity leads to a precise statistical description of the structure of galaxies and their evolution.
Using an unconventional single line diagnostic that unambiguously identifies AGNs in composite galaxies we report statistical differences in the properties (stellar age, [OII] luminosity, colour) between active and inactive galaxies at 0.62<z<1.2 ext racted from the VIMOS Public Extragalactic Redshift Survey (VIPERS). The nuclear activity is probed by the high-ionization [NeV] emission line and along with their parent samples, the galaxies are properly selected according to their stellar mass, redshift, and colour distributions. We report younger underlying stellar ages and higher [OII] luminosities of active galaxies in the green valley and in the blue cloud compared to control samples. We observe higher fractions of green galaxies hosting AGN activity at progressively bluer (r-K) colours. Depending on the location of the host galaxy in the NUVrK colour diagram we find higher AGN fractions in massive blue galaxies and in the least massive red galaxies, in agreement with the picture that black holes vary their properties when hosted in either star-forming or passive galaxies. Exactly where the fast quenching processes are expected to play a role, we identify a novel class of active galaxies in the blue cloud with signatures typical for a suddenly suppression of their star formation activity after a burst happening in the recent past. Their optical spectra resemble those of post-starburst galaxies, that would never be identified in a spectroscopic search using classical selection techniques. Broadly, these active galaxies selected on the [NeV] line are not commonly represented in shallow X-ray, mid-IR, or classical line diagnostics. If we consider that our results are limited by the shallow observational limits and rapid AGN variability, the impact of AGN feedback on galaxy formation and evolution may represent an important channel of fast-transiting galaxies moving to the red sequence.
198 - A. Cappi , F. Marulli , J. Bel 2015
We investigate the higher-order correlation properties of the VIMOS Public Extragalactic Redshift Survey (VIPERS) to test the hierarchical scaling hypothesis at z~1 and the dependence on galaxy luminosity, stellar mass, and redshift. We also aim to a ssess deviations from the linearity of galaxy bias independently from a previously performed analysis of our survey (Di Porto et al. 2014). We have measured the count probability distribution function in cells of radii 3 < R < 10 Mpc/h, deriving $sigma_{8g}$, the volume-averaged two-,three-,and four-point correlation functions and the normalized skewness $S_{3g}$ and kurtosis $S_{4g}$ for volume-limited subsamples covering the ranges $-19.5 le M_B(z=1.1)-5log(h) le -21.0$, $9.0 < log(M*/M_{odot} h^{-2}) le 11.0$, $0.5 le z < 1.1$. We have thus performed the first measurement of high-order correlations at z~1 in a spectroscopic redshift survey. Our main results are the following. 1) The hierarchical scaling holds throughout the whole range of scale and z. 2) We do not find a significant dependence of $S_{3g}$ on luminosity (below z=0.9 $S_{3g}$ decreases with luminosity but only at 1{sigma}-level). 3) We do not detect a significant dependence of $S_{3g}$ and $S_{4g}$ on scale, except beyond z~0.9, where the dependence can be explained as a consequence of sample variance. 4) We do not detect an evolution of $S_{3g}$ and $S_{4g}$ with z. 5) The linear bias factor $b=sigma_{8g}/sigma_{8m}$ increases with z, in agreement with previous results. 6) We quantify deviations from the linear bias by means of the Taylor expansion parameter $b_2$. Our results are compatible with a null non-linear bias term, but taking into account other available data we argue that there is evidence for a small non-linear bias term.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا