ﻻ يوجد ملخص باللغة العربية
We give a characterisation of the field into which quotients of values of L-functions associated to a cusp form belong. The construction involves shifted convolution series of divisor sums and to establish it we combine parts of F. Browns technique to study multiple modular values with the properties of a double Eisentein series previously studied by the author and C. OSullivan.
In this work we provide a meromorphic continuation in three complex variables of two types of triple shifted convolution sums of Fourier coefficients of holomorphic cusp forms. The foundations of this construction are based in the continuation of the
The moments of quadratic Dirichlet $L$-functions over function fields have recently attracted much attention with the work of Andrade and Keating. In this article, we establish lower bounds for the mean values of the product of quadratic Dirichlet $L
We prove the asymptotic formula for the fourth moment of automorphic $L$-functions of level $p^{ u}$, where $p$ is a fixed prime number and $ u rightarrow infty$. This paper is a continuation of work by Rouymi, who computed asymptotics of the first t
In this paper, a conjecture of Mazur, Rubin and Stein concerning certain averages of modular symbols is proved.
We study the average of the product of the central values of two $L$-functions of modular forms $f$ and $g$ twisted by Dirichlet characters to a large prime modulus $q$. As our principal tools, we use spectral theory to develop bounds on averages of