ترغب بنشر مسار تعليمي؟ اضغط هنا

No double detonations but core carbon ignitions in high-resolution, grid-based simulations of binary white dwarf mergers

307   0   0.0 ( 0 )
 نشر من قبل Tomasz Plewa
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the violent phase of the merger of massive binary white dwarf systems. Our aim is to characterize the conditions for explosive burning to occur, and identify a possible explosion mechanism of Type Ia supernovae. The primary components of our model systems are carbon-oxygen (C/O) white dwarfs, while the secondaries are made either of C/O or of pure helium. We account for tidal effects in the initial conditions in a self-consistent way, and consider initially well-separated systems with slow inspiral rates. We study the merger evolution using an adaptive mesh refinement, reactive, Eulerian code in three dimensions, assuming symmetry across the orbital plane. We use a co-rotating reference frame to minimize the effects of numerical diffusion, and solve for self-gravity using a multi-grid approach. We find a novel detonation mechanism in C/O mergers with massive primaries. Here the detonation occurs in the primarys core and relies on the combined action of tidal heating, accretion heating, and self-heating due to nuclear burning. The exploding structure is compositionally stratified, with a reverse shock formed at the surface of the dense ejecta. The existence of such a shock has not been reported elsewhere. The explosion energy ($1.6times 10^{51}$ erg) and $^{56}$Ni mass (0.86 M$_odot$) are consistent with a SN Ia at the bright end of the luminosity distribution, with an approximated decline rate of $Delta m_{15}(B)approx 0.99$. Our study does not support double-detonation scenarios in the case of a system with a 0.6 M$_odot$ helium secondary and a 0.9 M$_odot$ primary. Although the accreted helium detonates, it fails to ignite carbon at the base of the boundary layer or in the primarys core.



قيم البحث

اقرأ أيضاً

153 - Chenchong Zhu 2012
The merger of two carbon-oxygen white dwarfs can lead either to a spectacular transient, stable nuclear burning or a massive, rapidly rotating white dwarf. Simulations of mergers have shown that the outcome strongly depends on whether the white dwarf s are similar or dissimilar in mass. In the similar-mass case, both white dwarfs merge fully and the remnant is hot throughout, while in the dissimilar case, the more massive, denser white dwarf remains cold and essentially intact, with the disrupted lower mass one wrapped around it in a hot envelope and disk. In order to determine what constitutes similar in mass and more generally how the properties of the merger remnant depend on the input masses, we simulated unsynchronized carbon-oxygen white dwarf mergers for a large range of masses using smoothed-particle hydrodynamics. We find that the structure of the merger remnant varies smoothly as a function of the ratio of the central densities of the two white dwarfs. A density ratio of 0.6 approximately separates similar and dissimilar mass mergers. Confirming previous work, we find that the temperatures of most merger remnants are not high enough to immediately ignite carbon fusion. During subsequent viscous evolution, however, the interior will likely be compressed and heated as the disk accretes and the remnant spins down. We find from simple estimates that this evolution can lead to ignition for many remnants. For similar-mass mergers, this would likely occur under sufficiently degenerate conditions that a thermonuclear runaway would ensue.
Some simulations of Type Ia supernovae feature self-consistent thermonuclear detonations. However, these detonations are not meaningful if the simulations are not resolved, so it is important to establish the requirements for achieving a numerically converged detonation. In this study we examine a test detonation problem inspired by collisions of white dwarfs. This test problem demonstrates that achieving a converged thermonuclear ignition requires spatial resolution much finer than 1 km in the burning region. Current computational resource constraints place this stringent resolution requirement out of reach for multi-dimensional supernova simulations. Consequently, contemporary simulations that self-consistently demonstrate detonations are possibly not converged and should be treated with caution.
The recent detection of gravitational waves and electromagnetic counterparts emitted during and after the collision of two neutron stars marks a breakthrough in the field of multi-messenger astronomy. Numerical relativity simulations are the only too l to describe the binarys merger dynamics in the regime when speeds are largest and gravity is strongest. In this work we report state-of-the-art binary neutron star simulations for irrotational (non-spinning) and spinning configurations. The main use of these simulations is to model the gravitational-wave signal. Key numerical requirements are the understanding of the convergence properties of the numerical data and a detailed error budget. The simulations have been performed on different HPC clusters, they use multiple grid resolutions, and are based on eccentricity reduced quasi-circular initial data. We obtain convergent waveforms with phase errors of 0.5-1.5 rad accumulated over approximately 12 orbits to merger. The waveforms have been used for the construction of a phenomenological waveform model which has been applied for the analysis of the recent binary neutron star detection. Additionally, we show that the data can also be used to test other state-of-the-art semi-analytical waveform models.
We report the discovery of ZTF J2243+5242, an eclipsing double white dwarf binary with an orbital period of just $8.8$ minutes, the second known eclipsing binary with an orbital period less than ten minutes. The system likely consists of two low-mass white dwarfs, and will merge in approximately 400,000 years to form either an isolated hot subdwarf or an R Coronae Borealis star. Like its $6.91, rm min$ counterpart, ZTF J1539+5027, ZTF J2243+5242 will be among the strongest gravitational wave sources detectable by the space-based gravitational-wave detector The Laser Space Interferometer Antenna (LISA) because its gravitational-wave frequency falls near the peak of LISAs sensitivity. Based on its estimated distance of $d=2120^{+131}_{-115},rm pc$, LISA should detect the source within its first few months of operation, and should achieve a signal-to-noise ratio of $87pm5$ after four years. We find component masses of $M_A= 0.349^{+0.093}_{-0.074},M_odot$ and $M_B=0.384^{+0.114}_{-0.074},M_odot$, radii of $R_A=0.0308^{+0.0026}_{-0.0025},R_odot$ and $R_B = 0.0291^{+0.0032}_{-0.0024},R_odot$, and effective temperatures of $T_A=22200^{+1800}_{-1600},rm K$ and $T_B=16200^{+1200}_{-1000},rm K$. We determined all of these properties, and the distance to this system, using only photometric measurements, demonstrating a feasible way to estimate parameters for the large population of optically faint ($r>21 , m_{rm AB}$) gravitational-wave sources which the Vera Rubin Observatory (VRO) and LISA should identify.
167 - Warren R. Brown 2017
We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 min, respectively. The 40 min system is eclipsing; it is composed of a 0.30 Msun an d a 0.52 Msun WD. The 46 min system is a likely LISA verification binary. The short 20 Myr and ~34 Myr gravitational wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM~CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin-orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger as proposed by Shen.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا