ﻻ يوجد ملخص باللغة العربية
We describe a quantum limit to measurement of classical spacetimes. Specifically, we formulate a quantum Cramer-Rao lower bound for estimating the single parameter in any one-parameter family of spacetime metrics. We employ the locally covariant formulation of quantum field theory in curved spacetime, which allows for a manifestly background-independent derivation. The result is an uncertainty relation that applies to all globally hyperbolic spacetimes. Among other examples, we apply our method to detection of gravitational waves using the electromagnetic field as a probe, as in laser-interferometric gravitational-wave detectors. Other applications are discussed, from terrestrial gravimetry to cosmology.
A spinless covariant field $phi$ on Minkowski spacetime $M^{d+1}$ obeys the relation $U(a,Lambda)phi(x)U(a,Lambda)^{-1}=phi(Lambda x+a)$ where $(a,Lambda)$ is an element of the Poincare group $Pg$ and $U:(a,Lambda)to U(a,Lambda)$ is its unitary repre
In this paper, we examine the relationship between general relativity and the theory of Einstein algebras. We show that according to a formal criterion for theoretical equivalence recently proposed by Halvorson (2012, 2015) and Weatherall (2015), the two are equivalent theories.
As a pure quantum state is being approached via linear feedback, and the occupation number approaches and eventually goes below unity, optimal control becomes crucial. We obtain theoretically the optimal feedback controller that minimizes the uncerta
The problem of time in quantum gravity calls for a relational solution. Using quantum reduction maps, we establish a previously unknown equivalence between three approaches to relational quantum dynamics: 1) relational observables in the clock-neutra
This chapter is an up-to-date account of results on globally hyperbolic spacetimes, and serves several purposes. We begin with the exposition of results from a foundational level, where the main tools are order theory and general topology, we continu