ﻻ يوجد ملخص باللغة العربية
Bandwidth measurements are conducted on a 1.4 m long spiral polymer multimode waveguide for a SMF and 50/125 um MMF launch and for different input offsets. The waveguide exhibits a bandwidth of at least 30 GHz for all input types, yielding a bandwidth-length product of at least 42 GHzxm, while no impact is observed on the waveguide performance due to the different spatial input offsets. The results indicate that data transmission at data rates even higher than 25 Gb/s can be achieved over such structures, thereby demonstrating the potential of multimode polymer waveguide technologies in short-reach board-level datacommunication links.
Dispersion studies are conducted on 1m long multimode polymer spiral waveguides with different refractive index profiles. Bandwidth-length products >40GHzxm are obtained from such waveguides under a 50/125 um MMF, indicating the potential of this technology.
Optical interconnects play a key role in the implementation of high-speed short-reach communication links within high-performance electronic systems. Multimode polymer waveguides in particular are strong candidates for use in passive optical backplan
Dispersion studies demonstrate that waveguide layout can be used to enhance the bandwidth performance of multimode polymer waveguides for use in board-level optical interconnects, providing >40 GHzxm without the need for any launch conditioning.
Optical interconnects have attracted significant research interest for use in short-reach board-level optical communication links in supercomputers and data centres. Multimode polymer waveguides in particular constitute an attractive technology for o
We present the results of our recent studies on a Thick Gas Electron Multiplier (THGEM)-based imaging detector prototype. It consists of two 100x100 mm^2 THGEM electrodes in cascade, coupled to a resistive anode. The event location is recorded with a