ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement Pre-thermalization in an Interaction Quench between Two Harmonic Oscillators

78   0   0.0 ( 0 )
 نشر من قبل Tatsuhiko N. Ikeda
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Entanglement pre-thermalization (EP) is a quasi-stationary nonequilibrium state of a composite system in which each individual subsystem looks thermal but the entire system remains nonthermal due to quantum entanglement between subsystems. We theoretically study the dynamics of EP following a coherent split of a one-dimensional harmonic potential in which two interacting bosons are confined. This problem is equivalent to that of an interaction quench between two harmonic oscillators. We show that this simple model captures the bare essentials of EP; that is, each subsystem relaxes to an approximate thermal equilibrium, whereas the total system remains entangled. We find that a generalized Gibbs ensemble, which incorporates nonlocal conserved quantities, exactly describes the total system. In the presence of a symmetry-breaking perturbation, EP is quasi-stationary and eventually reaches thermal equilibrium. We analytically show that the lifetime of EP is inversely proportional to the magnitude of the perturbation.



قيم البحث

اقرأ أيضاً

94 - M. A. Simon , A. Ala~na , M. Pons 2020
We study heat rectification in a minimalistic model composed of two masses subjected to on-site and coupling linear forces in contact with effective Langevin baths induced by laser interactions. Analytic expressions of the heat currents in the steady state are spelled out. Asymmetric heat transport is found in this linear system if both the bath temperatures and the temperature dependent bath-system couplings are also exchanged.
We study the dynamics of a quantum Ising chain after the sudden introduction of a non-integrable long-range interaction. Via an exact mapping onto a fully-connected lattice of hard-core bosons, we show that a pre-thermal state emerges and we investig ate its features by focusing on a class of physically relevant observables. In order to gain insight into the eventual thermalization, we outline a diagrammatic approach which complements the study of the previous quasi-stationary state and provides the basis for a self-consistent solution of the kinetic equation. This analysis suggests that both the temporal decay towards the pre-thermal state and the crossover to the eventual thermal one may occur algebraically.
We study the non-equilibrium evolution of a one-dimensional quantum Ising chain with spatially disordered, time-dependent, transverse fields characterised by white noise correlation dynamics. We establish pre-thermalization in this model, showing tha t the quench dynamics of the on-site transverse magnetisation first approaches a metastable state unaffected by noise fluctuations, and then relaxes exponentially fast towards an infinite temperature state as a result of the noise. We also consider energy transport in the model, starting from an inhomogeneous state with two domain walls which separate regions characterised by spins with opposite transverse magnetization. We observe at intermediate time scales a phenomenology akin to Anderson localization: energy remains localised within the two domain walls, until the Markovian noise destroys coherence and accordingly disorder-induced localization, allowing the system to relax towards the late stages of its non-equilibrium dynamics. We benchmark our results with the simpler case of a noisy quantum Ising chain without disorder, and we find that the pre-thermal plateau is a generic property of weakly noisy spin chains, while the phenomenon of pre-thermal Anderson localisation is a specific feature arising from the competition of noise and disorder in the real-time transport properties of the system.
Frustration of classical many-body systems can be used to distinguish ferromagnetic interactions from anti-ferromagnetic ones via the Toulouse conditions. A quantum version of the Toulouse conditions provides a similar classification based on the loc al ground states. We compute the global ground states for a family of models with Heisenberg-like interactions and analyse their behaviour with respect to frustration, entanglement and degeneracy. For that we develop analytical and numerical analysing tools capable to quantify the interplay between those three quantities. We find that the quantum Toulouse conditions provide a proper classification, however, refinements can be found. Our results show how the different local ground states affect the interplay and pave the way for further generalisation and possible applications to other quantum many-body systems.
We investigate the quantum dynamics of two bosons, trapped in a two-dimensional harmonic trap, upon quenching arbitrarily their interaction strength thereby covering the entire energy spectrum. Utilizing the exact analytical solution of the stationar y system we derive a closed analytical form of the expansion coefficients of the time-evolved two-body wavefunction, whose dynamics is determined by an expansion over the postquench eigenstates. The emergent dynamical response of the system is analyzed in detail by inspecting several observables such as the fidelity, the reduced one-body densities, the radial probability density of the relative wavefunction in both real and momentum space as well as the Tan contact unveiling the existence of short range two-body correlations. It is found that when the system is initialized in its bound state it is perturbed in the most efficient manner compared to any other initial configuration. Moreover, starting from an interacting ground state the two-boson response is enhanced for quenches towards the non-interacting limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا