ﻻ يوجد ملخص باللغة العربية
Entanglement pre-thermalization (EP) is a quasi-stationary nonequilibrium state of a composite system in which each individual subsystem looks thermal but the entire system remains nonthermal due to quantum entanglement between subsystems. We theoretically study the dynamics of EP following a coherent split of a one-dimensional harmonic potential in which two interacting bosons are confined. This problem is equivalent to that of an interaction quench between two harmonic oscillators. We show that this simple model captures the bare essentials of EP; that is, each subsystem relaxes to an approximate thermal equilibrium, whereas the total system remains entangled. We find that a generalized Gibbs ensemble, which incorporates nonlocal conserved quantities, exactly describes the total system. In the presence of a symmetry-breaking perturbation, EP is quasi-stationary and eventually reaches thermal equilibrium. We analytically show that the lifetime of EP is inversely proportional to the magnitude of the perturbation.
We study heat rectification in a minimalistic model composed of two masses subjected to on-site and coupling linear forces in contact with effective Langevin baths induced by laser interactions. Analytic expressions of the heat currents in the steady
We study the dynamics of a quantum Ising chain after the sudden introduction of a non-integrable long-range interaction. Via an exact mapping onto a fully-connected lattice of hard-core bosons, we show that a pre-thermal state emerges and we investig
We study the non-equilibrium evolution of a one-dimensional quantum Ising chain with spatially disordered, time-dependent, transverse fields characterised by white noise correlation dynamics. We establish pre-thermalization in this model, showing tha
Frustration of classical many-body systems can be used to distinguish ferromagnetic interactions from anti-ferromagnetic ones via the Toulouse conditions. A quantum version of the Toulouse conditions provides a similar classification based on the loc
We investigate the quantum dynamics of two bosons, trapped in a two-dimensional harmonic trap, upon quenching arbitrarily their interaction strength thereby covering the entire energy spectrum. Utilizing the exact analytical solution of the stationar