ﻻ يوجد ملخص باللغة العربية
We report synthesis, structural details and electrical transport properties of topological insulator Bi2Te3. The single crystalline specimens of Bi2Te3 are obtained from high temperature (950C) melt and slow cooling (2C/hour). The resultant crystals were shiny, one piece (few cm) and of bright silver color. The Bi2Te3 crystal is found to be perfect with clear [00l] alignment. The powder XRD pattern being carried out on crushed crystals showed that Bi2Te3 crystallized in R3m symmetry with a = b = 4.3866(2) A, c = 30.4978(13) A and Gamma = 120degree. The Bi position is refined to (0, 0, 0.4038 (9)) at Wyckoff position 6c and of Te are (0, 0, 0) at Wyckoff position 3a and at (0, 0, 0.2039(8)) at 6c. Ambient pressure and low temperature (down to 2K) electrical transport measurements revealed metallic behavior. Magneto transport measurements under magnetic field showed huge non saturating magneto resistance (MR) reaching up to 250% at 2.5K and under 50KOe field. Summarily, the short communication clearly demonstrates that Bi2Te3 topological insulator exhibit non-saturating large positive MR at low temperature of say below 10K. The non saturating MR is seen right up to room temperature albeit with much decreased magnitude. Worth mentioning is the fact that these crystals are bulk in nature and hence the anomalous MR is clearly an intrinsic property and not due to the size effect as reported for nano-wires or thin films of the same.
We report magneto-transport studies of topological insulator Bi_{2}Te_{3} thin films grown by pulsed laser deposition. A non-saturating linear-like magneto-resistance (MR) is observed at low temperatures in the magnetic field range from a few Tesla u
Weak antilocalization (WAL) effects in Bi2Te3 single crystals have been investigated at high and low bulk charge carrier concentrations. At low charge carrier density the WAL curves scale with the normal component of the magnetic field, demonstrating
We report the magneto-conductivity analysis at different temperatures under magnetic field of up to 5Tesla of a well characterized Bi2Te3 crystal. Details of crystal growth and various physical properties including high linear magneto resistance are
Kitaev interactions underlying a quantum spin liquid have been long sought, but experimental data from which their strengths can be determined directly is still lacking. Here, by carrying out inelastic neutron scattering measurements on high-quality
We report the effect of hydrostatic pressure on the magnetotransport properties of the Weyl semimetal NbAs. Subtle changes can be seen in the $rho_{xx}(T)$ profiles with pressure up to 2.31 GPa. The Fermi surfaces undergo an anisotropic evolution und