ترغب بنشر مسار تعليمي؟ اضغط هنا

On the influence of the environment on galactic chemical abundances

88   0   0.0 ( 0 )
 نشر من قبل Leonid Pilyugin S
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the influence of the environment on the chemical abundances of late-type galaxies with masses of 10^9.1 M_sun - 10^11 M_sun using data from the Sloan Digital Sky Survey(SDSS). We find that the environmental influence on galactic chemical abundances is strongest for galaxies with masses of 10^9.1 M_sun to 10^9.6 Msun. The galaxies in the densest environments may exceed the average oxygen abundances by about 0.05 dex (the median value of the overabundances for 101 galaxies in the densest environments) and show higher abundances in nitrogen by about 0.1. The abundance excess decreases with increasing galaxy mass and with decreasing environmental density. Since only a small fraction of late-type galaxies is located in high-density environments these galaxies do not have a significant influence on the general X/H - M relation. The metallicity - mass relations for isolated galaxies and for galaxies with neighbors are very similar. The mean shift of non-isolated galaxies around the metallicity - mass relation traced by the isolated galaxies is less than 0.01 dex for oxygen and less than 0.02 dex for nitrogen. The scatter in the galactic chemical abundances is large for any number of neighbor galaxies (at any environmental density), i.e., galaxies with both enhanced and reduced abundances can be found at any environmental density. This suggests that environmental effects do not play a key role in evolution of late-type galaxies as was also concluded in some of the previous studies.



قيم البحث

اقرأ أيضاً

The mean alpha-to-iron abundance ratio ([$alpha$/Fe]) of galaxies is sensitive to the chemical evolution processes at early time, and it is an indicator of star formation timescale ($tau_{{rm SF}}$). Although the physical reason remains ambiguous, th ere is a tight relation between [$alpha$/Fe] and stellar velocity dispersion ($sigma$) among massive early-type galaxies (ETGs). However, no work has shown convincing results as to how this relation behaves at low masses. We assemble 15 data sets from the literature and build a large sample that includes 192 nearby low-mass ($18<sigma<80$~kms) ETGs. We find that the [$alpha$/Fe]-$sigma$ relation generally holds for low-mass ETGs, except in extreme environments. Specifically, in normal galaxy cluster environments, the [$alpha$/Fe]-$sigma$ relation and its intrinsic scatter are, within uncertainties, similar for low-mass and high-mass ETGs. However, in the most massive relaxed galaxy cluster in our sample, the zero point of the relation is higher and the intrinsic scatter is significantly larger. By contrast, in galaxy groups the zero point of the relation offsets in the opposite direction, again with substantial intrinsic scatter. The elevated [$alpha$/Fe] of low-mass ETGs in the densest environments suggests that their star formation was quenched earlier than in high-mass ETGs. For the low-mass ETGs in the lowest density environments, we suggest that their more extended star formation histories suppressed their average [$alpha$/Fe]. The large scatter in [$alpha$/Fe] may reflect stochasticity in the chemical evolution of low-mass galaxies.
We study how the void environment affects galactic chemical evolution by comparing the oxygen and nitrogen abundances of dwarf galaxies in voids with dwarf galaxies in denser regions. Using spectroscopic observations from SDSS DR7, we estimate oxygen , nitrogen, and neon abundances of 889 void dwarf galaxies and 672 dwarf galaxies in denser regions. A substitute for the [OII] 3727 doublet is developed, permitting oxygen abundance estimates of SDSS dwarf galaxies at all redshifts with the Direct Te method. We find that void dwarf galaxies have about the same oxygen abundance and Ne/O ratio, slightly higher neon abundances, and slightly lower nitrogen abundance and N/O ratio than dwarf galaxies in denser environments. We conclude that the void environment has a slight influence on dwarf galaxy chemical evolution. Our mass-N/O relationship shows that the secondary production of nitrogen commences at a lower stellar mass in void dwarf galaxies than in dwarf galaxies in denser environments. Our dwarf galaxy sample demonstrates a strong anti-correlation between the sSFR and N/O ratio, providing evidence that oxygen is produced in higher mass stars than those which synthesize nitrogen. The lower N/O ratios and smaller stellar mass for secondary nitrogen production seen in void dwarf galaxies may indicate both delayed star formation and a dependence of cosmic downsizing on the large-scale environment. A shift toward slightly higher oxygen abundances in void dwarf galaxies could be evidence of larger ratios of dark matter halo mass to stellar mass in voids than in denser regions.
The abundance of {alpha}-elements provides an important fossil signature in Galactic archaeology to trace the chemical evolution of the different disc populations. High-precision chemical abundances are crucial to improving our understanding of the c hemodynamical properties present in the Galaxy. However, deriving precise abundance estimations in the metal-rich disc ([M/H] > 0 dex) is still challenging. The aim of this paper is to analyse different error sources affecting magnesium abundance estimations from optical spectra of metal-rich stars. We derived Mg abundances for 87522 high-resolution spectra of 2210 solar neighbourhood stars from the AMBRE Project. For this purpose, the GAUGUIN automated abundance estimation procedure was employed. The normalisation procedure has a strong impact on the derived abundances, with a clear dependence on the stellar type and the line intensity. For non-saturated lines, the optimal wavelength domain for the local continuum placement should be evaluated using a goodness-of-fit criterion, allowing mask-size dependence with the spectral type. Moreover, for strong saturated lines, applying a narrow normalisation window reduces the parameter-dependent biases of the abundance estimate, increasing the line-to-line abundance precision. In addition, working at large spectral resolutions always leads to better results than at lower ones. The resulting improvement in the abundance precision makes it possible to observe both a clear thin-thick disc chemical distinction and a decreasing trend in the magnesium abundance even at supersolar metallicities. In the era of precise kinematical and dynamical data, optimising the normalisation procedures implemented for large spectroscopic stellar surveys would provide a significant improvement to our understanding of the chemodynamical patterns of Galactic populations.
130 - S. Goswami , A. Slemer , P. Marigo 2021
There is mounting evidence that the stellar initial mass function (IMF) could extend much beyond the canonical Mi ~100, Msun limit, but the impact of such hypothesis on the chemical enrichment of galaxies still remains to be clarified. We aim to addr ess this question by analysing the observed abundances of thin- and thick-disc stars in the Milky Way with chemical evolution models that account for the contribution of very massive stars dying as pair-instability supernovae. We built new sets of chemical yields from massive and very massive stars up to Mi ~ 350 Msun, by combining the wind ejecta extracted from our hydrostatic stellar evolution models with explosion ejecta from the literature. Using a simple chemical evolution code we analyse the effects of adopting different yield tables by comparing predictions against observations of stars in the solar vicinity. After several tests, we focus on the [O/Fe] ratio which best separates the chemical patterns of the two Milky Way components. We find that with a standard IMF, truncated at Mi ~ 100 Msun, we can reproduce various observational constraints for thin-disc stars, but the same IMF fails to account for the [O/Fe] ratios of thick-disc stars. The best results are obtained by extending the IMF up to Mi = 350 Msun and including the chemical ejecta of very massive stars, in the form of winds and pair-instability supernova explosions.Our study indicates that PISN played a significant role in shaping the chemical evolution of the Milky Way thick disc. By including their chemical yields it is easier to reproduce not only the level of the alpha-enhancement but also the observed slope of thick-disc stars in the [O/Fe] vs [Fe/H] diagram. The bottom line is that the contribution of very massive stars to the chemical enrichment of galaxies is potentially quite important and should not be neglected in chemical evolution models.
115 - J. Mendez-Abreu 2009
Galaxy mergers and interactions are mechanisms which could drive the formation of bars. Therefore, we could expect that the fraction of barred galaxies increases with the local density. Here we show the first results of an extensive search for barred galaxies in different environments. We conclude that the bar fraction on bright (L>L*) field, Virgo, and Coma cluster galaxies is compatible. These results point towards an scenario where the formation and/or evolution of bars depend mostly on internal galaxy processes rather than external ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا