ﻻ يوجد ملخص باللغة العربية
We demonstrate an original method -- based on controlled oxidation -- to create high-quality tunnel junctions between superconducting Al reservoirs and InAs semiconductor nanowires. We show clean tunnel characteristics with a current suppression by over $4$ orders of magnitude for a junction bias well below the Al gap $Delta_0 approx 200,mu {rm eV}$. The experimental data are in close agreement with the BCS theoretical expectations of a superconducting tunnel junction. The studied devices combine small-scale tunnel contacts working as thermometers as well as larger electrodes that provide a proof-of-principle active {em cooling} of the electron distribution in the nanowire. A peak refrigeration of about $delta T = 10,{rm mK}$ is achieved at a bath temperature $T_{bath}approx250-350,{rm mK}$ in our prototype devices. This method opens important perspectives for the investigation of thermoelectric effects in semiconductor nanostructures and for nanoscale refrigeration.
We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the
We report a systematic experimental study of mesoscopic conductance fluctuations in superconductor/normal/superconductor (SNS) devices Nb/InAs-nanowire/Nb. These fluctuations far exceed their value in the normal state and strongly depend on temperatu
The Josephson effect is a fundamental quantum phenomenon consisting in the appearance of a dissipationless supercurrent in a weak link between two superconducting (S) electrodes. While the mechanism leading to the Josephson effect is quite general, i
When biased at a voltage just below a superconductors energy gap, a tunnel junction between this superconductor and a normal metal cools the latter. While the study of such devices has long been focussed to structures of submicron size and consequent
Heat management and refrigeration are key concepts for nanoscale devices operating at cryogenic temperatures. The design of an on-chip mesoscopic refrigerator that works thanks to the input heat is presented, thus realizing a solid state implementati