ترغب بنشر مسار تعليمي؟ اضغط هنا

Morphological Inflection Generation with Hard Monotonic Attention

97   0   0.0 ( 0 )
 نشر من قبل Roee Aharoni
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a neural model for morphological inflection generation which employs a hard attention mechanism, inspired by the nearly-monotonic alignment commonly found between the characters in a word and the characters in its inflection. We evaluate the model on three previously studied morphological inflection generation datasets and show that it provides state of the art results in various setups compared to previous neural and non-neural approaches. Finally we present an analysis of the continuous representations learned by both the hard and soft attention cite{bahdanauCB14} models for the task, shedding some light on the features such models extract.



قيم البحث

اقرأ أيضاً

Neural sequence-to-sequence models are currently the predominant choice for language generation tasks. Yet, on word-level tasks, exact inference of these models reveals the empty string is often the global optimum. Prior works have speculated this ph enomenon is a result of the inadequacy of neural models for language generation. However, in the case of morphological inflection, we find that the empty string is almost never the most probable solution under the model. Further, greedy search often finds the global optimum. These observations suggest that the poor calibration of many neural models may stem from characteristics of a specific subset of tasks rather than general ill-suitedness of such models for language generation.
Current approaches to incorporating terminology constraints in machine translation (MT) typically assume that the constraint terms are provided in their correct morphological forms. This limits their application to real-world scenarios where constrai nt terms are provided as lemmas. In this paper, we introduce a modular framework for incorporating lemma constraints in neural MT (NMT) in which linguistic knowledge and diverse types of NMT models can be flexibly applied. It is based on a novel cross-lingual inflection module that inflects the target lemma constraints based on the source context. We explore linguistically motivated rule-based and data-driven neural-based inflection modules and design English-German health and English-Lithuanian news test suites to evaluate them in domain adaptation and low-resource MT settings. Results show that our rule-based inflection module helps NMT models incorporate lemma constraints more accurately than a neural module and outperforms the existing end-to-end approach with lower training costs.
A broad goal in natural language processing (NLP) is to develop a system that has the capacity to process any natural language. Most systems, however, are developed using data from just one language such as English. The SIGMORPHON 2020 shared task on morphological reinflection aims to investigate systems ability to generalize across typologically distinct languages, many of which are low resource. Systems were developed using data from 45 languages and just 5 language families, fine-tuned with data from an additional 45 languages and 10 language families (13 in total), and evaluated on all 90 languages. A total of 22 systems (19 neural) from 10 teams were submitted to the task. All four winning systems were neural (two monolingual transformers and two massively multilingual RNN-based models with gated attention). Most teams demonstrate utility of data hallucination and augmentation, ensembles, and multilingual training for low-resource languages. Non-neural learners and manually designed grammars showed competitive and even superior performance on some languages (such as Ingrian, Tajik, Tagalog, Zarma, Lingala), especially with very limited data. Some language families (Afro-Asiatic, Niger-Congo, Turkic) were relatively easy for most systems and achieved over 90% mean accuracy while others were more challenging.
Simultaneous machine translation begins to translate each source sentence before the source speaker is finished speaking, with applications to live and streaming scenarios. Simultaneous systems must carefully schedule their reading of the source sent ence to balance quality against latency. We present the first simultaneous translation system to learn an adaptive schedule jointly with a neural machine translation (NMT) model that attends over all source tokens read thus far. We do so by introducing Monotonic Infinite Lookback (MILk) attention, which maintains both a hard, monotonic attention head to schedule the reading of the source sentence, and a soft attention head that extends from the monotonic head back to the beginning of the source. We show that MILks adaptive schedule allows it to arrive at latency-quality trade-offs that are favorable to those of a recently proposed wait-k strategy for many latency values.
Despite the feature of real-time decoding, Monotonic Multihead Attention (MMA) shows comparable performance to the state-of-the-art offline methods in machine translation and automatic speech recognition (ASR) tasks. However, the latency of MMA is st ill a major issue in ASR and should be combined with a technique that can reduce the test latency at inference time, such as head-synchronous beam search decoding, which forces all non-activated heads to activate after a small fixed delay from the first head activation. In this paper, we remove the discrepancy between training and test phases by considering, in the training of MMA, the interactions across multiple heads that will occur in the test time. Specifically, we derive the expected alignments from monotonic attention by considering the boundaries of other heads and reflect them in the learning process. We validate our proposed method on the two standard benchmark datasets for ASR and show that our approach, MMA with the mutually-constrained heads from the training stage, provides better performance than baselines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا