ترغب بنشر مسار تعليمي؟ اضغط هنا

A JVLA survey of the high frequency radio emission of the massive magnetic B- and O-type stars

152   0   0.0 ( 0 )
 نشر من قبل Sushma Kurapati
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We conducted a survey of seven magnetic O and eleven B-type stars with masses above $8M_{odot}$ using the Very Large Array in the 1cm, 3cm and 13cm bands. The survey resulted in a detection of two O and two B-type stars. While the detected O-type stars - HD 37742 and HD 47129 - are in binary systems, the detected B-type stars, HD 156424 and ALS 9522, are not known to be in binaries. All four stars were detected at 3cm, whereas three were detected at 1cm and only one star was detected at 13cm. The detected B-type stars are significantly more radio luminous than the non-detected ones, which is not the case for O-type stars. The non-detections at 13cm are interpreted as due to thermal free-free absorption. Mass-loss rates were estimated using 3cm flux densities and were compared with theoretical mass-loss rates, which assume free-free emission. For HD 37742, the two values of the mass-loss rates were in good agreement, possibly suggesting that the radio emission for this star is mainly thermal. For the other three stars, the estimated mass-loss rates from radio observations were much higher than those expected from theory, suggesting either a possible contribution from non- thermal emission from the magnetic star or thermal or non-thermal emission due to interacting winds of the binary system, especially for HD 47129. All the detected stars are predicted to host centrifugal magnetospheres except HD 37742, which is likely to host a dynamical magnetosphere. This suggests that non-thermal radio emission is favoured in stars with centrifugal magnetospheres.



قيم البحث

اقرأ أيضاً

249 - P. Leto , C. Trigilio , C.S. Buemi 2020
The non-thermal radio emission of main-sequence early-type stars is a signature of stellar magnetism. We present multi-wavelength (1.6-16.7 GHz) ATCA measurements of the early-type magnetic star rho OphC, which is a flat-spectrum non-thermal radio so urce. The rho OphC radio emission is partially circularly polarized with a steep spectral dependence: the fraction of polarized emission is about 60% at the lowest frequency sub-band (1.6 GHz) while is undetected at 16.7 GHz. This is clear evidence of coherent Auroral Radio Emission (ARE) from the rho OphC magnetosphere. Interestingly, the detection of the rho OphCs ARE is not related to a peculiar rotational phase. This is a consequence of the stellar geometry, which makes the strongly anisotropic radiation beam of the amplified radiation always pointed towards Earth. The circular polarization sign evidences mainly amplification of the ordinary mode of the electromagnetic wave, consistent with a maser amplification occurring within dense regions. This is indirect evidence of the plasma evaporation from the polar caps, a phenomenon responsible for the thermal X-ray aurorae. rho OphC is not the first early-type magnetic star showing the O-mode dominated ARE but is the first star with the ARE always on view.
We present the analysis performed on spectropolarimetric data of 97 O-type targets included in the framework of the MiMeS (Magnetism in Massive Stars) Survey. Mean Least-Squares Deconvolved Stokes I and V line profiles were extracted for each observa tion, from which we measured the radial velocity, rotational and non-rotational broadening velocities, and longitudinal magnetic field. The investigation of the Stokes I profiles led to the discovery of 2 new multi-line spectroscopic systems (HD46106, HD204827) and confirmed the presence of a suspected companion in HD37041. We present a modified strategy of the Least-Squares Deconvolution technique aimed at optimising the detection of magnetic signatures while minimising the detection of spurious signatures in Stokes V. Using this analysis, we confirm the detection of a magnetic field in 6 targets previously reported as magnetic by the MiMeS collaboration (HD108, HD47129A2, HD57682, HD148937, CPD-28 2561, and NGC 1624-2), as well as report the presence of signal in Stokes V in 3 new magnetic candidates (HD36486, HD162978, HD199579). Overall, we find a magnetic incidence rate of 7+/-3%, for 108 individual O stars (including all O-type components part of multi-line systems), with a median uncertainty of the longitudinal field measurements of about 50,G. An inspection of the data reveals no obvious biases affecting the incidence rate or the preference for detecting magnetic signatures in the magnetic stars. Similar to A- and B-type stars, we find no link between the stars physical properties (e.g. Teff, mass, age) and the presence of a magnetic field. However, the Of?p stars represent a distinct class of magnetic O-type stars.
121 - R. Blomme , D. Volpi 2013
The colliding winds in a massive binary system generate synchrotron emission due to a fraction of electrons that have been accelerated to relativistic speeds around the shocks in the colliding-wind region. We studied the radio light curve of 9 Sgr = HD 164794, a massive O-type binary with a 9.1-yr period. We investigated whether the radio emission varies consistently with orbital phase and we determined some parameters of the colliding-wind region. We reduced a large set of archive data from the Very Large Array (VLA) to determine the radio light curve of 9 Sgr at 2, 3.6, 6 and 20 cm. We also constructed a simple model that solves the radiative transfer in the colliding-wind region and both stellar winds. The 2-cm radio flux shows clear phase-locked variability with the orbit. The behaviour at other wavelengths is less clear, mainly due to a lack of observations centred on 9 Sgr around periastron passage. The high fluxes and nearly flat spectral shape of the radio emission show that synchrotron radiation dominates the radio light curve at all orbital phases. The model provides a good fit to the 2-cm observations, allowing us to estimate that the brightness temperature of the synchrotron radiation emitted in the colliding-wind region at 2 cm is at least 4 x 10^8 K. The simple model used here already allows us to derive important information about the colliding-wind region. We propose that 9 Sgr is a good candidate for more detailed modelling, as the colliding-wind region remains adiabatic during the whole orbit thus simplifying the hydrodynamics.
To investigate statistically whether magnetic fields in massive stars are ubiquitous or appear in stars with specific spectral classification, certain ages, or in a special environment, we acquired 41 new spectropolarimetric observations for 36 stars . Among the observed sample roughly half of the stars are probable members of clusters at different ages, whereas the remaining stars are field stars not known to belong to any cluster or association. Spectropolarimetric observations were obtained during three different nights using the low-resolution spectropolarimetric mode of FORS2 (FOcal Reducer low dispersion Spectrograph) mounted on the 8-m Antu telescope of the VLT. To assess the membership in open clusters and associations, we used astrometric catalogues with the best currently available kinematic and photometric data. A field at a significance level of 3sigma was detected in ten O-type stars. Importantly, the largest longitudinal magnetic fields were measured in two Of?p stars: <B_z>=-381+-122G for CPD-282561 and <B_z>=-297+-62G for HD148937, previously detected by us as magnetic. The obtained observations of HD148937 on three different nights indicate that the magnetic field is slightly variable. Our new measurements support our previous conclusion that large-scale organized magnetic fields with polar field strengths in excess of 1kG are not widespread among O-type stars. Among the stars with a detected magnetic field, only one star, HD156154, belongs to an open cluster at high membership probability. According to previous kinematic studies, four magnetic O-type stars in the sample are well-known candidate runaway stars.
277 - Yael Naze 2014
Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM observations, corresponding to all a vailable exposures of known massive magnetic stars (over 100 exposures covering ~60% of stars compiled in the catalog of Petit et al. 2013). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss-rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower-Mdot B stars and flattens for the more luminous, higher-Mdot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g. higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest some temperature stratification to exist in massive stars magnetospheres.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا