ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental evidence for the importance of Hunds exchange interaction for the incoherence of the charge carriers in iron-based superconductors

150   0   0.0 ( 0 )
 نشر من قبل J. Fink
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Angle-resolved photoemission spectroscopy (ARPES) is used to study the scattering rates of charge carriers from the hole pockets near Gamma in the iron-based high-Tc hole doped superconductors KxBa1-xFe2As2 x=0.4 and KxEu1-xFe2As2 x=0.55$ and the electron doped compound Ba(Fe1-xCox)2As2 x=0.075. The scattering rate for any given band is found to depend linearly on energy, indicating a non-Fermi liquid regime. The scattering rates in the hole-doped compound are considerably larger than those in the electron-doped compounds. In the hole-doped systems the scattering rate of the charge carriers of the inner hole pocket is about three times bigger than the binding energy indicating that the spectral weight is heavily incoherent. The strength of the scattering rates and the difference between electron and hole doped compounds signals the importance of Hunds exchange coupling for correlation effects in these iron-based high-Tc superconductors. The experimental results are in qualitative agreement with theoretical calculations in the framework of combined density functional dynamical mean-field theory.



قيم البحث

اقرأ أيضاً

222 - K. Haule , G. Kotliar 2009
A new class of high temperature superconductors based on iron and arsenic was recently discovered, with superconducting transition temperature as high as 55 K. Here we show, using microscopic theory, that the normal state of the iron pnictides at hig h temperatures is highly anomalous, displaying a Curie Weiss susceptibility and a linear temperature dependence of the resistivity. Below a coherence scale T*, the resistivity sharply drops and susceptibility crosses over to Pauli-like temperature dependence. Remarkably, the coherence-incoherence crossover temperature is a very strong function of the strength of the Hunds rule coupling J_Hund. On the basis of the normal state properties, we estimate J_Hund to be 0.35-0.4 eV. In the atomic limit, this value of J_Hund leads to the critical ratio of the exchange constants J_1/J_2~2. While normal state incoherence is in common to all strongly correlated superconductors, the mechanism for emergence of the incoherent state in iron-oxypnictides, is unique due to its multiorbital electronic structure.
The theoretical understanding of the nematic state of iron-based superconductors and especially of FeSe is still a puzzling problem. Although a number of experiments calls for a prominent role of local correlations and place iron superconductors at t he entrance of a Hund metal state, the effect of the electronic correlations on the nematic state has been theoretically poorly investigated. In this work we study the nematic phase of iron superconductors accounting for local correlations, including the effect of the Hunds coupling. We show that Hunds physics strongly affects the nematic properties of the system. It severely constraints the precise nature of the feasible orbital-ordered state and induces a differentiation in the effective masses of the zx=yz orbitals in the nematic phase. The latter effect leads to distinctive signatures in different experimental probes, so far overlooked in the interpretation of experiments. As notable examples the splittings between zx and yz bands at Gamma and M points are modified, with important consequences for ARPES measurements.
We investigate the currently debated issue concerning whether transition metal substitutions dope carriers in iron based superconductors. From first-principles calculations of the configuration-averaged spectral function of BaFe$_2$As$_2$ with disord ered Co/Zn substitutions of Fe, important doping effects are found beyond merely changing the carrier density. While the chemical potential shifts suggest doping of a large amount of carriers, a reduction of the coherent carrier density is found due to the loss of spectral weight. Therefore, none of the change in the Fermi surface, density of states, or charge distribution can be solely used for counting doped coherent carriers, let alone presenting the full effects of the disordered substitutions. Our study highlights the necessity of including disorder effects in the studies of doped materials in general.
Even after nearly a century of discovery of superconductivity, there has been no direct experimental proof of the expected zero resistance of superconductors. Indeed, it has been believed that it is impossible to experimentally show that the resistan ce has fallen exactly to zero. In this work we demonstrate that the dc resistivity of a superconducting material below the transition temperature has to be exactly zero.
One of the pivotal questions in the physics of high-temperature superconductors is whether the low-energy dynamics of the charge carriers is mediated by bosons with a characteristic timescale. This issue has remained elusive since electronic correlat ions are expected to dramatically speed up the electron-boson scattering processes, confining them to the very femtosecond timescale that is hard to access even with state-of-the-art ultrafast techniques. Here we simultaneously push the time resolution and the frequency range of transient reflectivity measurements up to an unprecedented level that enables us to directly observe the 16 fs build-up of the effective electron-boson interaction in hole-doped copper oxides. This extremely fast timescale is in agreement with numerical calculations based on the t-J model and the repulsive Hubbard model, in which the relaxation of the photo-excited charges is achieved via inelastic scattering with short-range antiferromagnetic excitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا