ترغب بنشر مسار تعليمي؟ اضغط هنا

On a relation between roughening and coarsening

79   0   0.0 ( 0 )
 نشر من قبل Federico Corberi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We argue that a strict relation exists between two in principle unrelated quantities: The size of the growing domains in a coarsening system, and the kinetic roughening of an interface. This relation is confirmed by extensive simulations of the Ising model with different forms of quenched disorder, such as random bonds, random fields and stochastic dilution.



قيم البحث

اقرأ أيضاً

268 - A. Chechkin , I.M. Sokolov 2021
Generalized (non-Markovian) diffusion equations with different memory kernels and subordination schemes based on random time change in the Brownian diffusion process are popular mathematical tools for description of a variety of non-Fickian diffusion processes in physics, biology and earth sciences. Some of such processes (notably, the fluid limits of continuous time random walks) allow for either kind of description, but other ones do not. In the present work we discuss the conditions under which a generalized diffusion equation does correspond to a subordination scheme, and the conditions under which a subordination scheme does possess the corresponding generalized diffusion equation. Moreover, we discuss examples of random processes for which only one, or both kinds of description are applicable.
We study the dynamical behavior of a square lattice Ising model with exchange and dipolar interactions by means of Monte Carlo simulations. After a sudden quench to low temperatures we find that the system may undergo a coarsening process where strip e phases with different orientations compete or alternatively it can relax initially to a metastable nematic phase and then decay to the equilibrium stripe phase through nucleation. We measure the distribution of equilibration times for both processes and compute their relative probability of occurrence as a function of temperature and system size. This peculiar relaxation mechanism is due to the strong metastability of the nematic phase, which goes deep in the low temperature stripe phase. We also measure quasi-equilibrium autocorrelations in a wide range of temperatures. They show a distinct decay to a plateau that we identify as due to a finite fraction of frozen spins in the nematic phase. We find indications that the plateau is a finite size effect. Relaxation times as a function of temperature in the metastable region show super-Arrhenius behavior, suggesting a possible glassy behavior of the system at low temperatures.
This article gives a short description of pattern formation and coarsening phenomena and focuses on recent experimental and theoretical advances in these fields. It serves as an introduction to phase ordering kinetics and it will appear in the specia l issue `Coarsening dynamics, Comptes Rendus de Physique, edited by F. Corberi and P. Politi.
The common saying, that information is power, takes a rigorous form in stochastic thermodynamics, where a quantitative equivalence between the two helps explain the paradox of Maxwells demon in its ability to reduce entropy. In the present paper, we build on earlier work on the interplay between the relative cost and benefits of information in producing work in cyclic operation of thermodynamic engines (by Sandberg etal. 2014). Specifically, we study the general case of overdamped particles in a time-varying potential (control action) in feedback that utilizes continuous measurements (nonlinear filtering) of a thermodynamic ensemble, to produce suitable adaptations of the second law of thermodynamics that involve information.
We study the phenomenon of super-roughening found on surfaces growing on disordered substrates. We consider a one-dimensional version of the problem for which the pure, ordered model exhibits a roughening phase transition. Extensive numerical simulat ions combined with analytical approximations indicate that super-roughening is a regime of asymptotically flat surfaces with non-trivial, rough short-scale features arising from the competition between surface tension and disorder. Based on this evidence and on previous simulations of the two-dimensional Random sine-Gordon model [Sanchez et al., Phys. Rev. E 62, 3219 (2000)], we argue that this scenario is general and explains equally well the hitherto poorly understood two-dimensional case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا