ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Measurement of the Spectral Lag of Gamma-Ray Bursts and its Implications for Spectral Evolution Behaviors

131   0   0.0 ( 0 )
 نشر من قبل Lang Shao
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We carry out a systematical study of the spectral lag properties of 50 single-pulsed Gamma-Ray Bursts (GRBs) detected by Fermi/GBM. By dividing the light curves into multiple consecutive energy channels we provide a new measurement of the spectral lag which is independent on energy channel selections. We perform a detailed statistical study of our new measurements. We find two similar power-law energy dependencies of both the pulse arrival time and pulse width. Our new results on the power-law indices would favor the relativistic geometric effects for the origin of spectral lag. However, a complete theoretical framework that can fully account for the diverse energy dependencies of both arrival time and pulse width revealed in this work is still missing. We also study the spectral evolution behaviors of the GRB pulses. We find that the GRB pulse with negligible spectral lag would usually have a shorter pulse duration and would appear to have a hardness-intensity tracking (HIT) behavior and the GRB pulse with a significant spectral lag would usually have a longer pulse duration and would appear to have a hard-to-soft (HTS) behavior.



قيم البحث

اقرأ أيضاً

We investigated the rest frame spectral lags of two complete samples of bright long (50) and short (6) gamma-ray bursts (GRB) detected by Swift. We analysed the Swift/BAT data through a discrete cross-correlation function (CCF) fitted with an asymmet ric Gaussian function to estimate the lag and the associated uncertainty. We find that half of the long GRBs have a positive lag and half a lag consistent with zero. All short GRBs have lags consistent with zero. The distributions of the spectral lags for short and long GRBs have different average values. Limited by the small number of short GRBs, we cannot exclude at more than 2 sigma significance level that the two distributions of lags are drawn from the same parent population. If we consider the entire sample of long GRBs, we do not find evidence for a lag-luminosity correlation, rather the lag-luminosity plane appears filled on the left hand side, thus suggesting that the lag-luminosity correlation could be a boundary. Short GRBs are consistent with the long ones in the lag-luminosity plane.
159 - G. Ghirlanda 2010
We study the spectral evolution of 13 short duration Gamma Ray Bursts (GRBs) detected by the Gamma Burst Monitor (GBM) on board Fermi. We study spectra resolved in time at the level of 2-512 ms in the 8 keV-35 MeV energy range. We find a strong corre lation between the observed peak energy Ep and the flux P within individual short GRBs. The slope of the Ep P^s correlation for individual bursts ranges between ~0.4 and ~1. There is no correlation between the low energy spectral index and the peak energy or the flux. Our results show that in our 13 short GRBs Ep evolves in time tracking the flux. This behavior is similar to what found in the population of long GRBs and it is in agreement with the evidence that long GRBs and (the still few) short GRBs with measured redshifts follow the same rest frame Ep-Liso correlation. Its origin is most likely to be found in the radiative mechanism that has to be the same in both classes of GRBs.
122 - Rupal Basak , A.R. Rao 2013
Time-resolved spectral analysis, though a very promising method to understand the emission mechanism of gamma-ray bursts (GRBs), is difficult to implement in practice because of poor statistics. We present a new method for pulse-wise time-resolved sp ectral study of the individual pulses of GRBs, using the fact that many spectral parameters are either constants or smooth functions of time. We use this method for the two pulses of GRB 081221, the brightest GRB with separable pulses. We choose, from the literature, a set of possible models which includes the Band model, blackbody with a power-law (BBPL), a collection of black bodies with a smoothly varying temperature profile, along with a power-law (mBBPL), and two blackbodies with a power-law (2BBPL). First, we perform time-resolved study to confirm the spectral parameter variations, and then construct the new model to perform a joint spectral fit. We find that any photospheric emission in terms of black bodies is required mainly in the rising parts of the pulses and the falling part can be adequately explained in terms of the Band model, with the low energy photon index within the regime of synchrotron model. Interestingly, we find that 2BBPL is comparable or sometimes even better, though marginally, than the Band model, in all episodes. Consistent results are also obtained for the brightest GRB of Fermi era --- GRB 090618. We point out that the method is generic enough to test any spectral model with well defined parameter variations.
We explain the results of Yu et al. (2015b) of the novel sharpness angle measurement to a large number of spectra obtained from the Fermi gamma-ray burst monitor. The sharpness angle is compared to the values obtained from various representative emis sion models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. It is found that more than 91% of the high temporally and spectrally resolved spectra are inconsistent with any kind of optically thin synchrotron emission model alone. It is also found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to 58+23 -18% of the peak flux. These results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed spectra. Since any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin synchrotron radiation are likely required in a full explanation of the spectral peaks or breaks of the GRB prompt emission phase.
76 - Z. B. Zhang , M. Jiang , Y. Zhang 2020
Owing to narrow energy band of textit{Swift}/BAT, several urgent issues are required to pay more attentions but unsolved so far. We systematically study the properties of a refined sample of 283 textit{Swift}/BAT gamma-ray bursts with well-measured s pectral peak energy ($E_{text p}$) at a high confidence level larger than 3$sigma$. It is interestingly found that duration ($T_{90}$) distribution of textit{Swift} bursts still exhibits an evident bimodality with a more reliable boundary of $T_{90}simeq$1.06 s instead of 2 s for previously contaminated samples including bursts without well-peaked spectra, which is very close to $sim$1.27 s and $sim$0.8 s suggested by some authors for Fermi/GBM and textit{Swift}/BAT catalogs, respectively. The textit{Swift}/BAT short and long bursts have comparable mean $E_{text p}$ values of $87^{+112}_{-49}$ and $85^{+101}_{-46}$ keV in each, similar to what found for both types of BATSE bursts, which manifests the traditional short-hard/long-soft scheme may not be tenable for the certain energy window of a detector. In statistics, we also investigate the consistency of distinct methods for the $E_{text p}$ estimates and find that Bayesian approach and BAND function can always give consistent evaluations. In contrast, the frequently-used cut-off power-law model matches two other methods for lower $E_{text p}$ and will overestimate the $E_{text p}$ more than 70% as $E_{text p}>$100 keV. Peak energies of X-ray flashes, X-ray rich bursts and classical gamma-ray bursts could have an evolutionary consequence from thermal-dominated to non-thermal-dominated radiation mechanisms. Finally, we find that the $E_{text p}$ and the observed fluence ($S_{gamma}$) in the observer frame are correlated as $E_psimeq [S_{gamma}/(10^{-5} erg cm^{-2})]^{0.28}times 117.5^{+44.7}_{-32.4}$ keV proposed to be an useful indicator of GRB peak energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا