ترغب بنشر مسار تعليمي؟ اضغط هنا

Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator

305   0   0.0 ( 0 )
 نشر من قبل Jerome Faure
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scale by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes.



قيم البحث

اقرأ أيضاً

A laser pulse guided in a curved plasma channel can excite wakefields that steer electrons along an arched trajectory. As the electrons are accelerated along the curved channel, they emit synchrotron radiation. We present simple analytical models and simulations examining laser pulse guiding, wakefield generation, electron steering, and synchrotron emission in curved plasma channels. For experimentally realizable parameters, a ~2 GeV electron emits 0.1 photons per cm with an average photon energy of multiple keV.
85 - C. J. Zhang , J. F. Hua , Y. Wan 2016
A new method for diagnosing the temporal characteristics of ultrashort electron bunches with linear energy chirp generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser, it is deflected and stretched along the direction of the electric field of the laser. Upon exiting the plasma, if the bunch goes through a narrow slit in front of the dipole magnet that disperses the electrons in the plane of the laser polarization, it can form a series of bunchlets that have different energies but are separated by half a laser wavelength. Since only the electrons that are undeflected by the laser go through the slit, the energy spectrum of the bunch is modulated. By analyzing the modulated energy spectrum, the shots where the bunch has a linear energy chirp can be recognized. Consequently, the energy chirp and beam current profile of those bunches can be reconstructed. This method is demonstrated through particle-in-cell simulations and experiment.
237 - X. L. Xu 2014
Ionization injection triggered by short wavelength laser pulses inside a nonlinear wakefield driven by a longer wavelength laser is examined via multi-dimensional particle-in-cell simulations. We find that very bright electron beams can be generated through this two-color scheme in either collinear propagating or transverse colliding geometry. For a fixed laser intensity $I$, lasers with longer/shorter wavelength $lambda$ have larger/smaller ponderomotive potential ($propto I lambda^2$). The two color scheme utilizes this property to separate the injection process from the wakefield excitation process. Very strong wakes can be generated at relatively low laser intensities by using a longer wavelength laser driver (e.g. a $10 micrometer$ CO$_2$ laser) due to its very large ponderomotive potential. On the other hand, short wavelength laser can produce electrons with very small residual momenta ($p_perpsim a_0sim sqrt{I}lambda$) inside the wake, leading to electron beams with very small normalized emittances (tens of $ anometer$). Using particle-in-cell simulations we show that a $sim10 femtosecond$ electron beam with $sim4 picocoulomb$ of charge and a normalized emittance of $sim 50 anometer$ can be generated by combining a 10 $micrometer $ driving laser with a 400 $ anometer$ injection laser, which is an improvement of more than one order of magnitude compared to the typical results obtained when a single wavelength laser used for both the wake formation and ionization injection.
We generate inverse Compton scattered X-rays in both linear and nonlinear regimes with a 250 MeV laser wakefield electron accelerator and plasma mirror by retro-reflecting the unused drive laser light to scatter from the accelerated electrons. We cha racterize the X-rays using a CsI(Tl) voxelated scintillator that measures their total energy and divergence as a function of plasma mirror distance from the accelerator exit. At each plasma mirror position, these X-ray properties are correlated with the measured fluence and inferred intensity of the laser pulse after driving the accelerator to determine the laser strength parameter $a_0$. The results show that ICS X-rays are generated at $a_0$ ranging from $0.3pm0.1$ to $1.65pm0.25$, and exceed the strength of co-propagating bremsstrahlung and betatron X-rays at least ten-fold throughout this range of $a_0$.
173 - J. Kim , T. Wang , V. Khudik 2021
Single cycle laser pulse propagating inside a plasma causes controllable asymmetric plasma electron expulsion from laser according to laser carrier envelope phase (CEP) and forms an oscillating plasma bubble. Bubbles transverse wakefield is modified, exhibiting periodic modulation. Injection scheme for a laser wakefield accelerator combining a single cycle low frequency laser pulse and a many cycle high frequency laser pulse is proposed. The co-propagating laser pulses form a transversely oscillating wakefield which efficiently traps and accelerates electrons from background plasma. By tuning the initial CEP of the single cycle laser pulse, injection dynamics can be modified independently of the many cycle pulse, enabling control of electron bunches spatial profile.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا