ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensitivity of Complex Networks

164   0   0.0 ( 0 )
 نشر من قبل Marco Tulio Angulo
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The sensitivity (i.e. dynamic response) of complex networked systems has not been well understood, making difficult to predict whether new macroscopic dynamic behavior will emerge even if we know exactly how individual nodes behave and how they are coupled. Here we build a framework to quantify the sensitivity of complex networked system of coupled dynamic units. We characterize necessary and sufficient conditions for the emergence of new macroscopic dynamic behavior in the thermodynamic limit. We prove that these conditions are satisfied only for architectures with power-law degree distributions. Surprisingly, we find that highly connected nodes (i.e. hubs) only dominate the sensitivity of the network up to certain critical frequency.



قيم البحث

اقرأ أيضاً

In this paper we consider the problem of controlling a limited number of target nodes of a network. Equivalently, we can see this problem as controlling the target variables of a structured system, where the state variables of the system are associat ed to the nodes of the network. We deal with this problem from a different point of view as compared to most recent literature. Indeed, instead of considering controllability in the Kalman sense, that is, as the ability to drive the target states to a desired value, we consider the stronger requirement of driving the target variables as time functions. The latter notion is called functional target controllability. We think that restricting the controllability requirement to a limited set of important variables justifies using a more accurate notion of controllability for these variables. Remarkably, the notion of functional controllability allows formulating very simple graphical conditions for target controllability in the spirit of the structural approach to controllability. The functional approach enables us, moreover, to determine the smallest set of steering nodes that need to be actuated to ensure target controllability, where these steering nodes are constrained to belong to a given set. We show that such a smallest set can be found in polynomial time. We are also able to classify the possible actuated variables in terms of their importance with respect to the functional target controllability problem.
The ability to control a complex network towards a desired behavior relies on our understanding of the complex nature of these social and technological networks. The existence of numerous control schemes in a network promotes us to wonder: what is th e underlying relationship of all possible input nodes? Here we introduce input graph, a simple geometry that reveals the complex relationship between all control schemes and input nodes. We prove that the node adjacent to an input node in the input graph will appear in another control scheme, and the connected nodes in input graph have the same type in control, which they are either all possible input nodes or not. Furthermore, we find that the giant components emerge in the input graphs of many real networks, which provides a clear topological explanation of bifurcation phenomenon emerging in dense networks and promotes us to design an efficient method to alter the node type in control. The findings provide an insight into control principles of complex networks and offer a general mechanism to design a suitable control scheme for different purposes.
Much has been said about observability in system theory and control; however, it has been recently that observability in complex networks has seriously attracted the attention of researchers. This paper examines the state-of-the-art and discusses som e issues raised due to complexity and stochasticity. These unresolved issues call for a new practical methodology. For stochastic systems, a degree of observability may be defined and the observability problem is not a binary (i.e., yes-no) question anymore. Here, we propose to employ a goal-seeking system to play a supervisory role in the network. Hence, improving the degree of observability would be a valid objective for the supervisory system. Towards this goal, the supervisor dynamically optimizes the observation process by reconfiguring the sensory parts in the network. A cognitive dynamic system is suggested as a proper choice for the supervisory system. In this framework, the network itself is viewed as the environment with which the cognitive dynamic system interacts. Computer experiments confirm the potential of the proposed approach for addressing some of the issues raised in networks due to complexity and stochasticity.
79 - Giacomo Como 2017
Resilience has become a key aspect in the design of contemporary infrastructure networks. This comes as a result of ever-increasing loads, limited physical capacity, and fast-growing levels of interconnectedness and complexity due to the recent techn ological advancements. The problem has motivated a considerable amount of research within the last few years, particularly focused on the dynamical aspects of network flows, complementing more classical static network flow optimization approaches. In this tutorial paper, a class of single-commodity first-order models of dynamical flow networks is considered. A few results recently appeared in the literature and dealing with stability and robustness of dynamical flow networks are gathered and originally presented in a unified framework. In particular, (differential) stability properties of monotone dynamical flow networks are treated in some detail, and the notion of margin of resilience is introduced as a quantitative measure of their robustness. While emphasizing methodological aspects -- including structural properties, such as monotonicity, that enable tractability and scalability -- over the specific applications, connections to well-established road traffic flow models are made.
Network science have constantly been in the focus of research for the last decade, with considerable advances in the controllability of their structural. However, much less effort has been devoted to study that how to improve the controllability of c omplex networks. In this paper, a new algorithm is proposed to improve the controllability of complex networks by rewiring links regularly which transforms the network structure. Then it is demonstrated that our algorithm is very effective after numerical simulation experiment on typical network models (Erdos-Renyi and scale-free network). We find that our algorithm is mainly determined by the average degree and positive correlation of in-degree and out-degree of network and it has nothing to do with the network size. Furthermore, we analyze and discuss the correlation between controllability of complex networks and degree distribution index: power-law exponent and heterogeneity
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا