ﻻ يوجد ملخص باللغة العربية
In this paper we introduce a mathematical model for small deformations induced by external forces of closed surfaces that are minimisers of Helfrich-type energies. Our model is suitable for the study of deformations of cell membranes induced by the cytoskeleton. We describe the deformation of the surface as a graph over the undeformed surface. A new Lagrangian and the associated Euler-Lagrange equations for the height function of the graph are derived. This is the natural generalisation of the well known linearisation in the Monge gauge for initially flat surfaces. We discuss energy perturbations of point constraints and point forces acting on the surface. We establish existence and uniqueness results for weak solutions on spheres and on tori. Algorithms for the computation of numerical solutions in the general setting are provided. We present numerical examples which highlight the behaviour of the surface deformations in different settings at the end of the paper.
In this contribution to the proceedings of the 11th Mathematical Society of Japan (MSJ) Seasonal Institute (July 2018) we give an overview of some recent work on a mathematical model for small deformations of a spherical membrane. The idea is to cons
We derive and analyse an energy to model lipid raft formation on biological membranes involving a coupling between the local mean curvature and the local composition. We apply a perturbation method recently introduced by Fritz, Hobbs and the first au
We prove the existence of positive solutions to a sys- tem of k non-linear elliptic equations corresponding to standing- wave k-uples solutions to a system of non-linear Klein-Gordon equations. Our solutions are characterised by a small energy/charge ratio, appropriately defined.
Consider a bounded solution of the focusing, energy-critical wave equation that does not scatter to a linear solution. We prove that this solution converges in some weak sense, along a sequence of times and up to scaling and space translation, to a s
In this paper we prove an area comparison result for certain totally geodesic surfaces in 3-manifolds with a lower bound on the scalar curvature. This result is a variant of a comparison theorem of Heintze-Karcher for minimal hypersurfaces in manifol