ترغب بنشر مسار تعليمي؟ اضغط هنا

How square ice helps lubrication

319   0   0.0 ( 0 )
 نشر من قبل Astrid S. de Wijn
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the context of friction we use atomistic molecular-dynamics simulations to investigate water confined between graphene sheets over a wide range of pressures. We find that thermal equilibration of the confined water is hindered at high pressures. We demonstrate that, under the right conditions, square ice can form in an asperity, and that it is similar to cubic ice VII and ice X. We simulate sliding of atomically flat graphite on the square ice and find extremely low friction due to structural superlubricity. The conditions needed for square ice to form correspond to low sliding speeds, and we suggest that the ice observed in experiments of friction on wet graphite is of this type.



قيم البحث

اقرأ أيضاً

Motivated by recent realizations of Dy$_{2}$Ti$_{2}$O$_{7}$ and Ho$_{2}$Ti$_{2}$O$_{7}$ spin ice thin films, and more generally by the physics of confined gauge fields, we study a model of spin ice thin film with surfaces perpendicular to the $[001]$ cubic axis. The resulting open boundaries make half of the bonds on the interfaces inequivalent. By tuning the strength of these inequivalent orphan bonds, dipolar interactions induce a surface ordering equivalent to a two-dimensional crystallization of magnetic surface charges. This surface ordering can also be expected on the surfaces of bulk crystals. In analogy with partial wetting in soft matter, spins just below the surface are more correlated than in the bulk, but emph{not} ordered. For ultrathin films made of one cubic unit cell, once the surfaces are ordered, a square ice phase is stabilized over a finite temperature window, as confirmed by its entropy and the presence of pinch points in the structure factor. Ultimately, the square ice degeneracy is lifted at lower temperature and the system orders in analogy with the well-known $F$-transition of the $6$-vertex model.
In-situ NMR spin-lattice relaxation measurements were performed on several vapor deposited ices. The measurements, which span more than 6 orders of magnitude in relaxation times, show a complex spin-lattice relaxation pattern that is strongly depende nt on the growth conditions of the sample. The relaxation patterns change from multi-timescale relaxation for samples grown at temperatures below the amorphous-crystalline transition temperature to single exponential recovery for samples grown above the transition temperature. The slow-relaxation contribution seen in cold-grown samples exhibits a temperature dependence, and becomes even slower after the sample is annealed at 200K. The fast-relaxation contribution seen in these samples, does not seem to change or disappear even when heating to temperatures where the sample is evaporated. The possibility that the fast relaxation component is linked to the microporous structures in amorphous ice samples is further examined using an environmental electron scanning microscope. The images reveal complex meso-scale microporous structures which maintain their morphology up to their desorption temperatures. These findings, support the possibility that water molecules at pore surfaces might be responsible for the fast-relaxation contribution. Furthermore, the results of this study indicate that the pore-collapse dynamics observed in the past in amorphous ices using other experimental techniques, might be effectively inhibited in samples which are grown by relatively fast vapor deposition.
356 - Jinyu Liu , Jin Hu , Huibo Cao 2016
Layered compounds AMnBi2 (A=Ca, Sr, Ba, or rare earth element) have been established as Dirac materials. Dirac electrons generated by the two-dimensional (2D) Bi square net in these materials are normally massive due to the presence of a spin-orbital coupling (SOC) induced gap at Dirac nodes. Here we report that the Sb square net in an isostructural compound BaMnSb2 can host nearly massless Dirac fermions. We observed strong Shubnikov-de Haas (SdH) oscillations in this material. From the analyses of the SdH oscillations, we find key signatures of Dirac fermions, including light effective mass (~0.052m0; m0, mass of free electron), high quantum mobility (1280 cm2V-1S-1) and a Pi Berry phase accumulated along cyclotron orbit. Compared with AMnBi2, BaMnSb2 also exhibits much more significant quasi two-dimensional (2D) electronic structure, with the out-of-plane transport showing nonmetallic conduction below 120K and the ratio of the out-of-plane and in-plane resistivity reaching ~670. Additionally, BaMnSb2 also exhibits an antiferromagnetic order with a weak ferromagnetic component. The combination of nearly massless Dirac fermions on quasi-2D planes with a magnetic order makes BaMnSb2 an intriguing platform for seeking novel exotic phenomena of massless Dirac electrons.
We have used soft x-ray photoemission electron microscopy to image the magnetization of single domain La$_{0.7}$Sr$_{0.3}$MnO$_{3}$ nano-islands arranged in geometrically frustrated configurations such as square ice and kagome ice geometries. Upon th ermal randomization, ensembles of nano-islands with strong inter-island magnetic coupling relax towards low-energy configurations. Statistical analysis shows that the likelihood of ensembles falling into low-energy configurations depends strongly on the annealing temperature. Annealing to just below the Curie temperature of the ferromagnetic film (T$_{C}$ = 338 K) allows for a much greater probability of achieving low energy configurations as compared to annealing above the Curie temperature. At this thermally active temperature of 325 K, the ensemble of ferromagnetic nano-islands explore their energy landscape over time and eventually transition to lower energy states as compared to the frozen-in configurations obtained upon cooling from above the Curie temperature. Thus, this materials system allows for a facile method to systematically study thermal evolution of artificial spin ice arrays of nano-islands at temperatures modestly above room temperature.
Dirac states hosted by Sb/Bi square nets are known to exist in the layered antiferromagnetic AMnX$_2$ (A = Ca/Sr/Ba/Eu/Yb, X=Sb/Bi) material family the space group to be P4/nmm or I4/mmm. In this paper, we present a comprehensive study of quantum tra nsport behaviors, angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations on SrZnSb2, a nonmagnetic analogue to AMnX2, which crystallizes in the pnma space group with distorted square nets. From the quantum oscillation measurements up to 35 T, three major frequencies including F$_1$ = 103 T, F$_2$ = 127 T and F$_3$ = 160 T, are identified. The effective masses of the quasiparticles associated with these frequencies are extracted, namely, m*$_1$ = 0.1 m$_e$, m*$_2$ = 0.1 m$_e$ and m*$_3$ = 0.09m$_e$, where m$_e$ is the free electron mass. From the three-band Lifshitz-Kosevich fit, the Berry phases accumulated along the cyclotron orbit of the quasiparticles are 0.06$pi$, 1.2$pi$ and 0.74$pi$ for F$_1$, F$_2$ and F$_3$, respectively. Combined with the ARPES data and the first-principles calculations, we reveal that F2 and F3 are associated with the two nontrivial Fermi pockets at the Brillouin zone edge while F1 is associated with the trivial Fermi pocket at the zone center. In addition, the first-principles calculations further suggest the existence of Dirac nodal line in the band structure of SrZnSb$_2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا